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The constitutive relation for the granular flow of smooth, nearly elastic particles
((1 − e) � 1) is derived in the adiabatic limit, where the length scale for conduction,
λ/(1 − e)1/2, is small compared to the macroscopic scale. Here, λ is the mean free
path and e is the coefficient of restitution. In this case, energy is convected by the
mean flow, and the rate of change of the energy in a Lagrangian reference frame
is determined by a balance between the rate of production (due to the shear) and
the rate of dissipation (due to inelastic collisions). A Gaussian approximation is
used for the velocity distribution function, and the velocity variance is determined
from a balance equation for the second moment of the velocity distribution using
an asymptotic expansion in the small parameter ε = (1 − e)1/2. The stress tensor is
then determined from the velocity variance. It is found that the leading-order, O(ε)
and O(ε2) contributions to the stress tensor are identical in form to those in the
Euler, Navier–Stokes and Burnett approximations, and the numerical values of these
coefficients are close to those calculated using the Enskog procedure. The stress tensor
is used to obtain analytical expressions for the growth rates of the hydrodynamic
modes in a linear shear flow in the limit where the wavelength is long compared to the
length scale of conduction. In the plane of flow, transverse momentum perturbations
are found to be stable, while perturbations in the density and longitudinal momenta
grow exponentially at short times and decay in the long-time limit. It is found
that the Navier–Stokes approximation captures the leading behaviour of the growth
rate in the small-wavenumber limit for perturbations in the plane of flow. In the
vorticity direction, it is found that the Navier–Stokes approximation is not adequate
to capture the leading behaviour in the small-wavenumber limit, and dominant terms
in the growth rates of the transverse modes depend on the Burnett coefficients.
Perturbations in this direction are unstable at low density, but become stable as the
density is increased. When the wave length is small compared to the conduction length,
the rate of conduction of energy is large compared to the rate of dissipation, and the
hydrodynamic modes are identical to those for a gas of elastic particles at equilibrium.
The hydrodynamic modes are all stable in this case. The transition between these
two regimes is examined for a dilute granular flow, and a transition from unstable to
stable modes is predicted as the wavenumber is increased. The analysis indicates that
the minimal model which accurately captures the dynamics in both limits is one in
which the constitutive relation for the stress incorporates the strain-rate-dependent
Burnett terms in the stress equation (neglecting the temperature-dependent Burnett
terms), and the constitutive relation for the heat flux is the Fourier law for heat
conduction (neglecting all the Burnett terms).
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1. Introduction
A granular material consisting of particles of diameter d and coefficient of

restitution e is subjected to a shear flow with deformation rate Gij . For a linear
shear flow where there is only one non-zero component of the rate of deformation
tensor Gxy , the form of the shear stress can be deduced from dimensional analysis,

σxy = A(φ, e)md−1G2
xy, (1)

where A(φ, e) is a dimensionless constant, φ is the volume fraction of the particles,
and m is the particle mass. The above relation, called the Bagnold law, has been used
previously for simple shear flows. However, dimensional analysis does not indicate
how this could be extended for a more general case, where the rate of deformation
tensor and the stress tensor have many non-zero components. For the case of a dilute
granular flow, when the coefficient of restitution is close to 1, kinetic theory techniques
can be used to determine the correct form of the constitutive relation. In the kinetic
theory of gases (Chapman & Cowling 1970; Resibois & de Leener 1977), the Navier–
Stokes equations for the conserved (‘slow’) variables are derived by taking moments
of the Boltzmann equation. In a fluid of elastic particles, mass, momentum and energy
constitute the conserved variables, because these are conserved in particle collisions,
while the fluctuations in the higher moments decay over time scales comparable to
the time between collisions. In a gas of inelastic particles, it is expected that the
energy is also a non-conserved (‘fast’) variable, since it is not conserved in a collision.
Consequently, a hydrodynamic description should be derivable from equations for
the conservation of mass and momentum. The ‘temperature’ would act as an active
scalar which determines the viscometric coefficients, and which is determined, in a
Lagrangian reference frame, by a balance between the rate of production due to the
deformation and the rate of dissipation due to inelastic collisions.

Constitutive models have been developed for granular flows using methods similar
to those used in the kinetic theory of gases (Savage & Jeffrey 1981; Jenkins & Savage
1983; Lun et al. 1984; Jenkins & Richman 1985). These models typically fall into two
categories, the generalized Navier–Stokes equations where the mass and momentum
equations are similar to those for a simple fluid, but where the energy equation has
an additional term due to the dissipation of energy in inelastic collisions; and the
moment expansion models (Jenkins & Richman 1985) where the higher moments
of the velocity distribution function are incorporated in the description. There have
been systematic derivations of kinetic equations up to Burnett order starting from the
Boltzmann equation using an expansion with the Knudsen number and the inelasticity
of the particle collisions as the small parameters (Sela, Goldhirsch & Noskowicz 1996;
Sela & Goldhirsch 1998). All of these descriptions of granular flows do include the
temperature (mean square velocity) as a dynamical variable for the following reason.
If e is the coefficient of restitution, the energy dissipated in a collision between two
particles is O((1−e)T ), where the granular temperature T is the mean square velocity
of the particles (the particle mass is assumed to be 1 without loss of generality). It can
be inferred, by examining the energy balance equation, that fluctuations in energy are
damped over a length scale comparable to λ/(1 − e)1/2, where λ is the mean free path.
The rate of diffusion of energy in the energy balance equation scales as O(DT T/L2),
where the thermal diffusivity DT ∼ λT 1/2 in the kinetic theory of gases, while the
rate of dissipation of energy is O((1 − e)T 3/2/λ), since (T 1/2/λ) is the frequency of
collisions. Equating these two terms, it is clear that the rate of diffusion and rate of
dissipation are of equal magnitude for L ∼ λ/(1 − e)1/2. The equation for the energy
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flux also contains a term proportional to the density gradient which, from Sela &
Goldhirsch (1998), is proportional to (in the present notation) λT 3/2(1 − e)∇ρ. The
divergence of this flux, which enters into the energy balance equation, is proportional
to (λT 3/2(1 − e)ρ/L2), while the rate of dissipation of energy per unit volume is
proportional to ((1−e)ρT 3/2/λ). The ratio of the divergence of the flux due to density
variations and the rate of dissipation of energy is (λ2/L2), and the contribution to
the energy balance equation from the flux due to density gradients is important only
for L ∼ λ. The present analysis is restricted to L � λ, so this conduction term is not
important in the present case.

In the limit (1 − e) � 1, it is expected that energy fluctuations decay over distances
large compared to the mean free path. In the limit L � λ/(1−e)1/2, it is appropriate to
treat energy as a conserved variable and write a transport equation for the energy. For
L � λ/(1 − e)1/2, a hydrodynamic equation would not include the temperature as a
dynamical variable, but only as an active scalar which is convected with the flow, and
whose magnitude is determined by a balance between the source and dissipation of
energy in a Lagrangian reference frame. However, in contrast to passive scalars which
are merely advected by the flow, the temperature influences dynamical properties such
as the coefficients of viscosity. There are several advantages to a formulation of this
type. First, since the temperature equation does not contain spatial gradients (except
for those which appear in the substantial derivative), it is not necessary to specify
boundary conditions for the temperature and heat flux. The temperature boundary
condition is found to be sensitive to the boundary configuration (Jenkins & Richman
1986), and a formulation which does not require temperature boundary conditions
would not be sensitive to the specifics of the boundary configuration. The boundary
configuration does influence the flow within a distance of the order of a conduction
length λ/(1 − e)1/2 from the boundary, but this can be neglected when the conduction
length is small compared to the system size. Another advantage is that it is not
necessary to include terms proportional to the gradients of the temperature in the
stress equation. It should be noted, however, that this formulation applies only to
flows where there is a source of energy due to the rate of deformation within the
flow, such as a simple shear flow. It would not be applicable to flows where energy is
produced at boundaries such as vibrated granular materials, since the conduction of
energy is necessary to sustain the flow.

In the kinetic theory of gases (Chapman & Cowling 1970), the stress tensor at
Burnett order contains terms which are proportional to the second spatial gradient of
the temperature, and the square of the first gradient of the temperature. Similarly, the
heat flux contains terms proportional to the rate of deformation. When conduction
is neglected, these terms are no longer present in the stress equation, and so the
equation for the stress becomes considerably simplified at Burnett and higher orders.
The objective of the present analysis is to determine whether it is possible to obtain
simplified constitutive relations when the conduction length is small compared to
the macroscopic scale, and compare these with results from the kinetic theory for
granular flows where the temperature is included as a dynamical variable, in order to
examine whether this formulation accurately describes the dynamics of the flow.

In the present analysis, a constitutive relation for the stress tensor is obtained for the
case (1− e) � 1, and L � λ/(1− e)1/2, where the macroscopic scale is large compared
to the conduction length. In this case, an asymptotic expansion in the parameter
ε = (1−e)1/2 can still be used to calculate the collision integral, but the energy equation
simplifies to a local balance between the source of energy due to the deformation of
the material and the dissipation due to inelastic collisions (adiabatic approximation).
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The starting point for the analysis is the Boltzmann equation for the distribution
function. The zeroth and first velocity moments of the Boltzmann equation provide
the mass and momentum equations. Since mass and momentum are conserved in
a collision, the decay rates of these modes approach zero in the long-wave limit.
A Gaussian approximation is used for the higher moments, where the distribution
function is assumed to be a Gaussian distribution, in which the temperature Tij ,
which is the second moment of the velocity distribution, is a symmetric tensor. The
Gaussian approximation has been used earlier by Jenkins & Richman (1988) for
the second moments of the shear flow of inelastic disks, and the components of
the stress were determined in the dense and dilute limits. A different formalism was
adopted by Jenkins & Richman (1985), where Grad’s 13-moment method was used
to determine the moments of the velocity distribution. In the present analysis, an
expansion in the parameter ε is used to obtain a relation between Tij and the rate-of-
deformation tensor Gij . This is inserted into the equation for the stress to obtain the
constitutive relation as a series in the parameter ε. This formalism is advantageous
because it enables a direct comparison between the contribution to the stress tensor at
different orders in ε, and the contributions obtained in the Chapman–Enskog method
which employs an expansion in the ratio of the mean free path and the macroscopic
scale.

The mass and momentum equations reduce to the Navier–Stokes equations when
the stress tensor correct to O(ε) is used, and so this approximation is referred to
as the Navier–Stokes approximation. The expression for the stress tensor correct
to O(ε2), referred to as the Burnett approximation, incorporates normal stress
differences. The seven viscometric coefficients are explicitly calculated as a function
of the volume fraction. It is found that the coefficients in the Burnett approximation
evaluated here are numerically close to those obtained using the Enskog procedure
in the kinetic theory of dilute gases, and are identical to those obtained using a
simplified Enskog procedure when only the first term in the Sonine polynomial
expansion for the distribution function is retained (Chapman & Cowling 1970).
Thus, the results for the second-order closure scheme, when energy is treated as a
non-conserved variable, are in agreement with the results of the Enskog procedure
when energy is treated as a conserved variable. This agreement indicates that the
anisotropic Gaussian approximation for the distribution function is close to the
actual distribution function. The form of the stress tensor correct to O(ε3), referred
to as the super-Burnett approximation, is also deduced using symmetry arguments,
but the viscometric coefficients are not explicitly calculated.

Though the terms Navier–Stokes, Burnett and super-Burnett are used here to
denote different levels of approximation, it should be noted that the procedure used
here is qualitatively different from that used for deriving macroscopic equations in
the kinetic theory of gases. In that case, the mean free path λ is small compared
to the length scale of the flow L, and the mean velocity U is small compared to
the root mean square velocity of the gas T 1/2, so that an expansion is used in the
gradients of the density, velocity and temperature. The number of spatial derivatives
in the Burnett terms in the stress tensor is one higher than that in the Newton’s
law of viscosity. In gases at equilibrium, the Burnett equations have spurious high-
wavenumber instabilities, owing to the presence of second spatial derivatives of the
temperature and velocity fields in the expressions for stress. It is necessary to use
viscoelastic relaxation models in order to avoid numerical difficulties associated with
these instabilities (Jin & Slemrod 2001). However, these difficulties do not occur in the
present formulation, because the expansion is carried out about the driven state, with
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a non-zero strain rate, instead of an equilibrium state. Therefore, the Burnett terms
contain the same number of spatial derivatives as the Navier–Stokes terms, though
they are higher order in the parameter ε. For example, if perturbations (u′

x, u
′
y) are

imposed about a base state with rate of deformation Ḡxy , the variation in the stress
due to the Burnett term proportional to G2

xy will have the form 2Ḡxy(∂yu
′
x + ∂xu

′
y).

This term contains one spatial derivative because the expansion is carried out about
a driven state, in contrast to an equilibrium system where the same term will contain
two spatial derivatives. Thus, the Burnett term in a driven system contains the
same power of the wavenumber as the Navier–Stokes term, and it is the effect of
lowest-order wavenumber terms that are analysed here. Consequently, instabilities
due higher-order wavenumber terms are not encountered.

In the kinetic theory of gases, the Burnett coefficients can be calculated only in
the dilute limit, where the assumption of molecular chaos is valid. When the number
density increases, there is a contribution to the stress due to correlations in the
particle positions prior to collision (Ernst et al. 1978). This contribution results in a
non-analytic dependence of the stress on the rate of deformation. For a simple shear
flow, in which the flow is in the x-direction and the gradient in the y-direction, the
off-diagonal component of the stress is of the form σxy = ηGxy + η′Gxy |Gxy |1/2, where
Gxy = (∂ux/∂y) is the rate of deformation. Consequently, the leading correction to
Newton’s law for the stress is proportional to |Gxy |3/2, whereas the Burnett expansion
assumes that the leading correction to Newton’s law is a quadratic function of the
rate of deformation. Consequently, Burnett coefficients evaluated in the usual way
turn out to be infinite for systems at moderate density. However, as explained in
detail by Ernst et al. (1978), there are several restrictions on the range of Gxy for
which the calculation is valid. The most relevant restriction for the present analysis
(4(iii) in the conclusions section of Ernst et al. 1978), is that (Gxy/T 1/2 < k), where
k is the smallest wavenumber (inverse of the system size), and the applicability of
this restriction is examined in further detail. For a granular flow, the temperature
and the rate of deformation are related, since the rate of deformation is the source
of energy which sustains the fluctuating velocity of the particles. An asymptotic
analysis in the parameter ε = (1 − e)1/2 is used in the present analysis, and the
ratio (Gxy/T 1/2) ∝ ελ−1, where λ is the mean free path, and the contribution to the
stress tensor proportional to η′ is significant for (kλ) > ε1/2. However, the calculation
of the Burnett coefficients is restricted to the low-wavenumber regime (kλ) � ε, or
(Gxy/T 1/2) � k. In this case, even though the second correction to the stress tensor is
formally proportional to |Gxy |3/2 in a small Gxy expansion, it turns out that the rate
of deformation is sufficiently large that the Burnett term proportional to G2

xy is larger

than the term proportional to |Gxy |3/2. Consequently, the regular Burnett expansion
is valid in this limit.

The growth rates of the hydrodynamic modes for a linear shear flow are determined
in the long-wave limit in the second part of the analysis. The linear stability of a
sheared granular flow has been the subject of many studies. Since the mean velocity
is a linear function of the coordinate in the gradient direction, the equations for the
perturbations to the density, velocity and temperature are functions of the spatial
coordinate in an unbounded system, and a homogeneous eigenvalue problem cannot
be formulated if the wave numbers are independent of time. In order to obtain
spatially homogeneous equations, it is necessary to employ a time-dependent wave
vector, whose component in the direction of flow is a function of time, so that the
wave vector ‘turns’ with the mean flow. In this case, the equations for the perturbations
are independent of the spatial coordinates, but dependent on time, and so the growth
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or decay of perturbations is not exponential. Savage (1992) and Babic (1993) used a
linear stability analysis to determine the rate of growth of perturbations in the limit
of small time, when the growth is exponential. They found that perturbations are
unstable in all three coordinate directions, and numerically identified the unstable
domains in wavenumber space. Schmid & Kytomaa (1994) studied the stability of
perturbations in the limit of long time, and showed that perturbations become stable
in this limit. This indicates that there is a transient growth of perturbations with
wavenumber in the flow direction, followed by stabilization at long times. However,
the wave vectors in the gradient and vorticity directions are not functions of time,
and the studies of Savage (1992) and Babic (1993) indicate that perturbations are
unstable in these directions. There have been many subsequent studies of the linear
stability of bounded and unbounded granular flows such as those of Wang, Jackson &
Sundaresan (1996), and the conclusions of these studies have been qualitatively the
same. All of these studies have used equations similar to the Navier–Stokes mass,
momentum and energy equations to study the stability, with an additional energy
dissipation term due to inelastic collisions in the energy equation.

Kumaran (2001a, b) used a moment expansion method to determine the stability
of a granular flow in the dilute limit. In these studies, the dynamical variables were
not restricted to the mass, momentum and energy, but higher moments of the velocity
distribution function were also included. The growth rates of the hydrodynamic
modes were determined in the limit of short time and small wavenumber, and it was
found that the scaling of the growth rate with wavenumber was very different from
that for elastic systems. In an elastic fluid (Resibois & de Leener 1977; Kamgar-
Parsi & Cohen 1986), the growth rates of the five conserved modes, which are the
mass, momenta and energy, decay to zero in the long-wave limit since these are
conserved in binary collisions. The growth rates of all other moments of the velocity
distribution function are negative, indicating that fluctuations in these moments decay
over time scales comparable to the collision time. If perturbations in the form of plane
waves with wave vector k are applied to a fluid of elastic particles, there are three
modes, corresponding to fluctuations in energy and the two momenta transverse to k
(diffusive modes), which have a real negative growth rate proportional to |k|2, while
the density and longitudinal momentum are propagating modes in which the real part
is negative and proportional to |k|2, while the imaginary parts are equal in magnitude,
opposite in sign and proportional to |k|. The behaviour of the hydrodynamic modes
for a sheared granular flow turn out to be qualitatively different (Kumaran 2001a, b).
Since energy is not a conserved variable, there are only four hydrodynamic modes.
Moreover, since the shear flow is anisotropic, the magnitudes of the growth rates
depend on the direction of the wave vector. For perturbations in the flow direction,
there are three longitudinal modes which have a growth rate proportional to |k|2/3,
where k is the wavenumber. Of these, two are propagating and one is diffusive. The
behaviour of the hydrodynamic modes in the gradient direction is similar to that for
an elastic fluid. In the vorticity direction, there are two stable and two unstable modes,
and the growth rates of these modes are proportional to m, where m is the wave vector
in the vorticity direction. In addition, the growth rates of the hydrodynamic modes in
the vorticity direction are not adequately captured by the generalized Navier–Stokes
equations for granular flows, and it is necessary to include higher moments in order
to capture the growth of these perturbations accurately.

There are two objectives of the linear stability analysis carried out here, the first of
which is to obtain analytical expressions for the growth rates of the hydrodynamic
modes in the long-wave limit, and the second is to examine whether there is a
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qualitative difference between the predictions of the Navier–Stokes, Burnett and
super-Burnett approximations. Although previous studies have shown that the flow
is unstable in the flow and vorticity directions, it is of interest to examine whether
analytical expressions for the growth rate can be obtained in the limit of small
wavenumber, similar to those obtained in the hydrodynamics of elastic fluids. In
the molecular hydrodynamics of simple fluids, analytical solutions for the growth
rate can be used to obtain relations between the response function for an external
perturbation and the correlation functions for spontaneous fluctuations at equilibrium.
In a dissipative system, there is no equipartition theorem which provides the amplitude
of fluctuations at equilibrium. However, analytical expressions for the growth rate
can be used to obtain relations between the response to external perturbations and
the viscometric functions, thereby making it possible to determine the viscometric
functions from the response functions in situations where the viscometric functions
cannot be easily determined from first principles. In addition, it is easy to evaluate
the adequacy of the generalized Navier–Stokes equations for capturing the qualitative
behaviour of the growth rates.

The constitutive relations derived in § 2 are used to determine the growth rates of the
hydrodynamic modes in § § 4, 5 and 6. Analytical results are obtained for the growth
rate as a function of the viscometric coefficients, and these are evaluated in the limits
of low density and near close packing. The viscometric coefficients at intermediate
densities depend on the pair distribution function of the particles at contact, and it
is necessary to make an assumption about the form of the pair distribution function
in order to numerically evaluate the growth rates. The pair distribution function will,
in general, be affected by the mean shear, but in the present analysis we assume a
strain-rate-independent form for the pair distribution function. This is accurate at
low volume fraction, where there are no packing constraints and the pair distribution
function is 1, and near close packing, where the pair distribution function is determined
predominantly by packing constraints. Since the pair distribution function diverges
near close packing, it is not necessary to use a specific form of the pair distribution
function in order to obtain analytical results, and it is sufficient to retain the highest
power of the pair distribution function (or its derivative with respect to density) in
the equation for the growth rate. However, it is necessary to use a specific form of the
pair distribution function to obtain numerical results at intermediate volume fractions.
Two forms of the pair distribution function are used in the present calculation, the
Carnahan–Starling pair distribution function which is accurate at low and moderate
densities, and the high-density pair distribution function which is accurate near close
packing.

The analysis in § § 4, 5 and 6 is restricted to the limit where the length scale is
large compared to the conduction length, or L � λ/(1 − e)1/2. When the length scale
is small compared to the conduction length, the energy is a conserved variable, and
the system is identical to a gas of elastic hard spheres in the leading approximation
when an asymptotic expansion in the parameter ε = (1 − e)1/2 is carried out. In this
case, the Navier–Stokes mass, momentum and energy equations are adequate to
describe the dynamics of the system accurately, and it is known that perturbations
are stable in this limit. There are five hydrodynamic modes in this case, two of which
are propagating (corresponding to density and longitudinal momentum fluctuations),
and three are diffusive (corresponding to energy and two transverse momentum
fluctuations). Therefore, as the wavelength or perturbations is decreased from L �
λ/(1 − e)1/2 to L � λ/(1 − e)1/2, a transition is expected from the mode structure
in § § 4, 5 and 6 for an adiabatic system to the mode structure for a gas of elastic
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particles. This transition is examined in detail in § 7 for a dilute system in the limit of
small ε.

2. Constitutive relation
The system consists of smooth inelastic particles of diameter d and normal

coefficient of restitution e subject to a mean flow, in which the rate of deformation
tensor is given by (∂ui/∂xj ) = Gij . The mass and diameter of the particles are set
equal to 1, so that mass and length dimensions in all dynamical variables are scaled by
the particle mass and diameter. However, there is no suitable combination of material
properties for scaling time, and the time scale is set by the rate of deformation of the
material.

In kinetic theory, the velocity distribution function f (c, x, t) of a gas of inelastic
particles is determined by solving the Boltzmann equation, and the stress tensor is
determined from the moments of the distribution function. The Boltzmann equation
for the distribution function f (c, x, t) is (Chapman & Cowling 1970)

D(ρf )

Dt
+

∂(ρcif )

∂xi

+

(
ai − Dui

Dt

)
∂(ρf )

∂ci

− Gijcj

∂(ρf )

∂xi

=
∂c(ρf )

∂t
, (2)

where ui is the mean velocity, ci is the difference between the particle velocity and the
mean velocity, ai is the particle acceleration due to body forces, ρ is the number density
of particles, (D/Dt) ≡ (∂/∂t)+ui(∂/∂xi) is the substantial derivative, indicial notation
is used to represent vectors and a repeated index indicates a scalar product. The
distribution function f (c, x, t) is defined such that f (c, x, t) dcdx is the probability
of finding a particle in the volume dc in velocity space and dx in real space at time t .
The second and third terms on the left-hand side of (2) are the rates of change of the
distribution function due to convective transport in real and velocity space, the fourth
term on the left-hand side is due to the motion of particles across streamlines in the
flow, and the term on the right-hand side is the collision integral which provides the
change in the distribution function due to particle collisions. The collision integral
is usually determined assuming that there is no correlation in the velocities of the
colliding particles prior to collision (molecular chaos approximation). The collision
integral for inelastic particles is

∂c(ρf )

∂t
= χ(φ)ρ(x)ρ(x∗)

∫
k

∫
c∗

(
1

e2
f (c′, x)f (c∗′

, x∗) − f (c, x)f (c∗, x∗)

)
× ((u + c − u∗ − c∗) · k) (3)

where c+u(x) and c∗+u(x∗) are the absolute particle velocities, c′ and c∗′
are the post-

collisional fluctuating velocities of a pair of particles with pre-collisional velocities c
and c∗, k is the unit vector along the line from the centre of the particle with velocity
c to the centre of the particle with velocity c∗, x∗ = x + k is the centre of the particle
with velocity c∗, the integral is carried out over (c + u − c∗ − u∗) · k > 0, and χ(φ)
is the pair distribution function which is a function of the volume fraction φ of the
particles. The factor (1/e2) in the first term on the right-hand side of (3) accounts for
the contraction in phase space due to a decrease in the kinetic energy in an inelastic
collision. The Boltzmann equation is a nonlinear integro-differential equation, and is
difficult to solve in general. However, a solution can be obtained when the coefficient
of restitution is close to 1 ((1− e) � 1), so that the dissipation of energy in a collision
is small compared to the energy of a particle. In this case, the shear production and
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dissipation are neglected in the leading approximation, and the distribution function
is a Maxwell–Boltzmann distribution. However, the ‘temperature’ is not determined
from external thermodynamic constraints, but from a balance between the source of
energy due to the mean shear and the dissipation due to inelastic collisions.

The ‘temperature’ in the Maxwell–Boltzmann distribution is not isotropic, in
general, owing to the anisotropy induced by the mean shear. In the present analysis,
the anisotropy is included using a distribution function of the form

f (c, x, t) =
1

(2π)3/2Det(T)1/2
exp

(−ciT
−1
ij cj

2

)
, (4)

where Tij = 〈cicj 〉 is a second-order symmetric tensor, and the ensemble average 〈cicj 〉
is defined as

〈cicj 〉 =

∫
dcf (c, x, t)cicj . (5)

The terms in the matrix Tij are determined from the balance equation for the second
moment ρ〈cicj 〉 of the velocity distribution. As explained in § 1, we use the adiabatic
approximation that the length scale for conduction is small compared to the length
scale for the variation of the mean flow, L, so that there is a local balance between
the source of energy due to mean shear and the dissipation of energy due to inelastic
collisions. In this case, the second moment equation reduces to

ρ
DTij

Dt
+ ρ(GikTkj + GjkTki) =

∂cρ〈cicj 〉
∂t

. (6)

The collisional rate of change of the second moment, 〈cicj 〉, is difficult to calculate
in general, owing to the nonlinear nature of the Boltzmann collision integral. However,
an asymptotic expansion can be used in the parameter ε = (1−e)1/2, about an isotropic
Maxwell–Boltzmann distribution,

Tij = δijT + εT
(1)
ij + ε2T

(2)
ij + · · · , (7)

where it can be assumed, without loss of generality, that T
(1)
ii = T

(2)
ii = 0.

It is useful, at this stage, to discuss the magnitudes of the terms in the expansion
for Tij which are evaluated a little later, in order to analyse the reason for assuming
that the leading-order correction is O(ε). If S = (SijSji)

1/2 is the magnitude of the
symmetric traceless part Sij = (Gij + Gji − (2/3)δijGkk)/2, the results of the analysis

(A 4, A 12 and A 18 below) indicate that the scalings for T , T (1)
ij and T

(2)
ij are as follows,

T ∼ (Gii/ε
2)2 for Gii � (εS)

∼ (S/ε)2 for Gii � (εS), (8)

∣∣T (1)
ij

∣∣ ∼
(
T 1/2S/ε

)
∼ (GiiS/ε3) for Gii � (εS)

∼ (S/ε)2 for Gii � (εS), (9)

∣∣T (2)
ij

∣∣ ∼ (SGii/ε
2) for Gii � (εS)

∼ (S/ε)2 for Gii � (εS). (10)

Thus, the results indicate that the scaling of the mean square velocity is sensitively
dependent on the ratio of the isotropic and the symmetric traceless part of the
rate of deformation tensor. For a flow without any radial expansion or compression
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(Gii = 0), T , T (1)
ij and T

(2)
ij are of the same magnitude. For a flow with radial expansion

or compression (Gii �= 0), |T (1)
ij | ∼ εT , and |T (2)

ij | ∼ ε2T . Thus, the second and third

terms in (7) are O(ε) and O(ε2) smaller than the first terms for εS � Gii , and O(ε2)
and O(ε4) smaller than the first term for εS � Gii .

The procedure used for calculating the collision integral is discussed in detail, since
it is useful for anticipating the nature of the terms that appear in the collision integral
for the second moments. The change in a function ψ(c) of the fluctuating velocity
during a collision can be written as

∂〈ψ(c)〉
∂t

= χ(φ)ρ(x∗)

∫
k

∫
c∗

∫
c
f (x, c)f (x∗, c∗)(ψ(c′)−ψ(c))((u+c−u∗−c∗) · k), (11)

where c′ is the post-collisional velocity for the particle with pre-collisional velocity c.
Note that the above integral is evaluated for (u + c − u∗ − c∗) · k > 0, so that particles
approach each other prior to a collision. The above integral is evaluated by changing
the independent variables from the particle velocities c and c∗ to the velocity of the
centre of mass v and the velocity difference w,

vi = (ci + c∗
i + ui + u∗

i )/2

= (ci + c∗
i )/2 + Gijkj/2, (12)

wi = (ui + ci − u∗
i − c∗

i )

= (ci − c∗
i ) − Gijkj . (13)

The velocity of the centre of mass is not altered due to the collision, while the velocity
difference after collision w′

i is related to the velocity difference before collision wi by

w′
i = (δij − (1 + e)kikj )wj . (14)

The distribution functions f (x, u) and f (x∗, u∗) and the variables ψ(c) and ψ(c′) are
expressed in terms of v, w and w′ using (12), (13) and (14). It is easily verified, that
the second terms on the right-hand sides in (12) and (13) are O(ε) smaller than the
first terms on the right-hand sides for a flow with no radial expansion or contraction,
and O(ε2) smaller than the first terms for a flow with radial expansion or contraction.
Therefore, an asymptotic expansion in the parameter ε is used to evaluate the integral
in (11) to the desired accuracy. The details of the calculation are given in Appendix A,
and the resulting equation for the stress tensor, correct to ε2, is

σij = −p(φ, Sij , Gii)δij + 2µ(φ, SijGii)Sij + µb(φ, Sij , Gii)δijGkk

+ A(φ)SikSkj + B(φ)δijSklSlk + C(φ)δijG
2
kk + D(φ)SijGkk

+ E(φ)(AikSkj + AjkSki) + F(φ)(AikAkj − (δij /3)AklAlk)

+ G(φ)

(
∂

∂xi

(
1

ρ

∂p

∂xj

)
+

∂

∂xj

(
1

ρ

∂p

∂xi

)
− 2δij

3

∂

∂xk

(
1

ρ

∂p

∂xk

))
, (15)

where p(φ, T ), µ(φ, T ) and µb(φ, T ) are given by (A 14)–(A 16), and A to F are
given in (A 29) in Appendix A. The first three terms on the right-hand side in (15)
are usually included in the Navier–Stokes approximation for the granular flow, which
assumes that the stress is given by the usual Newtonian form, but where the viscosity
and pressure are functions of the granular temperature. The granular temperature is
determined by a balance between the source of energy due to the mean shear and the
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dissipation due to inelastic collisions. The last seven terms on the right-hand side of
(15) are usually included in the Burnett equations in the kinetic theory of gases. The
equation for the temperature T is given by (A 13),

ρCv

DT

Dt
+ p(φ, T )Gii − 2µ(φ, T )SikSki − µb(φ, T )G2

ii + ε2R(φ)T 3/2 = 0, (16)

where R(φ) is given by equation (A 17).
It is useful to examine the limiting behaviour of the viscometric coefficients in the

limit of low density (φ → 0) and near close packing (φ → φc). The limiting behaviour
of the pressure and the viscosity depend on the strain rate, due to the temperature
dependence on the strain rate, and have the form

p(l) =
6φT (l)

π
, p(c) =

24φ2χT (c)

π
, (17)

µ(l) =
5

√
T (l)

16
√

π
, µ(c) =

4φ2χ(12 + π)
√

T (c)

5π3/2
, (18)

µ
(l)
b =

16φ2
√

T (l)

π3/2
, µ

(l)
b =

16φ2χ
√

T (c)

π3/2
, (19)

where T (l) and T (c) are the values of T at low density and near close packing,
respectively. The coefficients A–G depend only on density, and have the following
leading-order behaviour in the limit φ → 0 (denoted by the superscript (l)) and in the
limit φ → φc (indicated by the superscript (c)),

A(l)(φ) = − 125

5376φ
, A(c)(φ) = φ2

c χ(φ)

(
4

35
− 192

35π

)
, (20)

B(l)(φ) =
125

16128φ
, B(c)(φ) = φ2

c χ(φ)

(
9

70
− 32

105π

)
, (21)

C(l)(φ) = −4φ2

3
, C(c)(φ) = −4φ2

c χ(φ)

3
, (22)

D(l)(φ) = − 25

1152φ
, D(c)(φ) = −φ2

c χ(φ)

(
13

45
+

8

5π

)
, (23)

E(l)(φ) = − 25

768φ
, E(c)(φ) = − φc

12
, (24)

F(l)(φ) =
25

768φ
, F(c)(φ) =

φc

12
, (25)

G(l)(φ) =
25

1536φ
, G(c)(φ) =

φc

24
. (26)

A natural reference point for validating the present results is the Chapman–Enskog
theory for dense gases, where the pressure and viscosity are calculated as a function
of density in the Navier–Stokes approximation, and the theory for dilute gases where
the Burnett coefficients are calculated in the dilute limit. Here, the asymptotic analysis
is carried out by expressing the distribution function as a product of the Maxwell–
Boltzmann distribution and a Sonine polynomial series in the particle velocities,
and the accuracy of the results depends on the number of terms retained in the
polynomial expansion. The first-order results, obtained by retaining just the first term
in the Sonine polynomial series, are numerically accurate to within 1.4% of more
exact results obtained when higher-order terms are retained. In the present calculation,
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(A 14) is identical to the result for the pressure in the Chapman–Enskog theory of
dense gases if the temperature is considered a thermodynamic variable. Equations
(A 15) and (A 16) for the shear and bulk viscosities are identical to those derived
using the Chapman–Enskog procedure, when the Sonine polynomial expansion is
truncated at the first term. A more accurate expansion, where the higher-order terms
are included in the expansion, results in a difference of about 1.4% in the expression
for the shear viscosity. The coefficients A(l)–G(l) are identical to those obtained from
the Chapman–Enskog theory for dilute gases if the Sonine polynomial expansion
for the distribution function is truncated at the first term. The coefficients D(l), E(l),
F(l) and G(l) differ by 1.4% from coefficients obtained by including the higher-order
terms in the expansion, while the coefficients A(l) and B(l) differ by about 6.5%
from those obtained from a more exact calculation using higher-order terms in the
expansion. The Chapman–Enskog theory predicts that C is identically zero, which
is in agreement with the present result which indicates that the contribution to C
proportional to (1/φ) is identically zero. Thus, the present viscometric coefficients
in the Navier–Stokes approximation are close to those obtained in the Chapman–
Enskog theory of dense gases, and those in the Burnett approximation are close to
those obtained in the dilute limit. The advantage of the present formulation is that
results for the Burnett approximation are not restricted to the low-density limit.

In the present calculation, the effect of the super-Burnett terms on the growth rates
of the hydrodynamic modes are also examined. There are two types of super-Burnett
terms, (i) those analogous to the term proportional to G in (15) which contain the
higher spatial derivatives of the stress tensor, and (ii) those analogous to the terms
proportional to A to F, which are cubic functions of the strain rate. The terms which
contain higher spatial gradients are not significant in the low-wavenumber limit, since
they result in higher powers of the wavenumber. However, they could be important
in the long-time limit owing to the dependence of the wave vector on time. This issue
is discussed in detail in § 4.2. The effect of the terms which are cubic functions of the
rate of deformation tensor are examined using a stress tensor of the form

σij = −p(φ, Sij , Gii)δij + 2µ(φ, SijGii)Sij + µb(φ, Sij , Gii)δijGkk

+ A(φ)SikSkj + B(φ)δijSklSlk + C(φ)δijG
2
kk

+ D(φ)SijGkk + E(φ)(AikSkj + AjkSki) + F(φ)(AikAkj − (δij /3)AklAlk)

+ G(φ)

(
∂

∂xi

(
1

ρ

∂p

∂xj

)
+

∂

∂xj

(
1

ρ

∂p

∂xi

)
− 2δij

3

∂

∂xk

(
1

ρ

∂p

∂xk

))

+ HSikSklSlj + ISikSkjGll + JSijG
2
ll

+ δij

(
KSklSlmSmk + LSklSlkGmm + MG3

kk

)
+ NAikAkjGll

+ O(AikSkj + AjkSki)Gll + PSijAklAlk + Q(AikAklSlj + SikSklAlj ) + RAikSklAjl

+ δij (SAklAlkGmm + T(SklAlmAmk + AklAlmSmk) + UAklSlmAmk). (27)

From dimensional analysis, it can be inferred that the coefficients H to U are
proportional to T −1/2.

The major difference between the present analysis and the earlier ones of Savage
(1992), Babic (1993) and Schmid & Kytomaa (1994) is that the Burnett terms are
included in the equation for stress, (15), and the adequacy of this approximation is
tested by comparing the results with those obtained by an augmented stress equation
which contains the super-Burnett terms, (27). In addition, the conduction term is not
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included in the energy equation, since it is small compared to the energy dissipation
term when the length scale is larger than the conduction length. The validity of this
assumption is checked in § 7 for a dilute shear flow, where the hydrodynamic modes
are analysed by incorporating the conduction term in the energy equation as well as
the Burnett terms in the momentum equation. It is verified that the conduction terms
are small when the length scale is larger than the conduction length.

3. Linear analysis
In order to compare the predictions of the different models, the growth rates of

the hydrodynamic (mass and momentum density) modes are analysed in the limits of
high and low density for:

(i) the asymptotic result for the stress tensor correct to second order in ε given in
(15), referred to as the Burnett approximation;

(ii) the asymptotic result for the stress tensor correct to first order in ε, which
corresponds to (15) with A to G set equal to zero, referred to as the Navier–Stokes
approximation; and

(iii) the expression for the stress tensor correct to third order given in (27),
with unknown forms of the coefficients H to U, referred to as the super-Burnett
approximation.

The mean velocity is a linear shear flow,

ūx = Ḡy,

ūy = 0,

ūz = 0,


 (28)

where Ḡ is assumed to be positive without loss of generality. The mean temperature
in this case is given by T̄ = (Ḡ2N̄/2ε2), where N̄ = N (φ̄), and N (φ) is given in
equation (A 19). In the low-density limit, the mean temperature is

T̄ (l) =
5πḠ2

2304ε2φ2
, (29)

and as the density approaches the close-packing density (φ → φc), the temperature is

T̄ (c) =
Ḡ2

ε2

(
1

15
+

π

180

)
. (30)

Conservation equations are written for the particle number density and the velocity
fields in the three directions,

∂tρ + ∂i(ρui) = 0, (31)

ρ(∂tui + uj∂jui) = ∂jσij , (32)

where ∂t = (∂/∂t), ∂i = (∂/∂xi), and indicial notation is used to represent the
components of a vector. The equation for T is given by (16). The equations for the
velocity perturbations are expressed in terms of Fourier modes,

ρ(x, y, z, t) = ρ̄ + ρ̃(t) exp (ikx + ily + imz),

ux(x, y, z, t)= ūx + ũx(t) exp (ikx + ily + imz),

uy(x, y, z, t)= ũy(t) exp (ikx + ily + imz),

uz(x, y, z, t) = ũz(t) exp (ikx + ily + imz),

T (x, y, z, t) = T̄ + T̃ exp (ikx + ily + imz)




. (33)
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When the above perturbations are inserted into the mass and momentum equations,
the resultant equations are explicitly dependent on the y-coordinate due to the y-
dependent mean flow if the wave vectors are independent of time. For example, in
the linearized mass conservation equation,

∂t ρ̃ + ikḠy∂xρ̃ + ρ̄(ikux + iluy + imuz) = 0, (34)

the second term on the left-hand side depends explicitly on the y-coordinate. In
order to avoid the presence of terms that depend explicitly on the y-coordinate, it
is necessary to assume that the wave vectors are time dependent and ‘turn’ with the
mean flow (Savage 1992). The wave vectors are chosen to be

k(t) = k0,

l(t) = l0 − Ḡtk0,

m(t) = m0.


 (35)

With this assumption, the mass conservation equation reduces to

∂t ρ̃ + ρ̄(ikux + iluy + imuz) = 0. (36)

However, this results in wave vectors that are explicitly dependent on time, and
the growth of the perturbations has to be determined by iterative integration for
perturbations with k0 �= 0. When these expressions are inserted into (31) and (32), and
linearized in the perturbations to the density and velocity, we obtain the equations
for the hydrodynamic modes,

∂t ρ̃ + ρ̄(ikũx + ilũy + imũz) = 0, (37)

ρ̄∂t ũx + Ḡũy = ikσ̃xx + ilσ̃xy + imσ̃xz, (38)

ρ̄∂t ũy = ikσ̃yx + ilσ̃yy + imσ̃yx, (39)

ρ̄∂t ũz = ikσ̃zx + ilσ̃zy + imσ̃zx. (40)

The equation for T , (16), has the form

ρ̄Cv∂t T̃ + p̄i(kũx + lũy + mũz) − 2µ̄Ḡi(lũx + kũy) − Ḡ2µ̄ρρ̃

+
3ε2R̄T̄ 1/2T̃

2
+ ε2T̄ 3/2R̄ρρ̃ = 0 (41)

where R̄ = R(φ̄) and R̄ρ = (dR(φ)/dρ)|φ=φ̄ .
The mass and momentum equations contain terms that depend on the temperature

and density perturbations because of the dependence of the pressure and viscosity
on the density and the temperature. Since the pressure is proportional to T and the
shear and bulk viscosities are proportional to T 1/2, the corrections to the pressure
and viscosity due to variations in the density and the strain rate can be written as

p̃ = p̄ρρ̃ +
p̄T̃

T̄
,

µ̃ = µ̄ρρ̃ +
µ̄T̃

2T̄
,

µ̃b = µ̄bρρ̃ +
µ̄bT̃

2T̄




(42)
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where

·̄ρ ≡ ∂ ·
∂ρ

∣∣∣∣
ρ=ρ̄,Gij =Ḡij

. (43)

Since the functions A(φ)–G(φ) are independent of temperature, the perturbations to
these functions are only due to perturbations in the density. The corrections to the
functions H–U due to fluctuations in the strain rate are given by

H̃ = H̄ρρ̃ − H̄T̃

2T̄
, (44)

since these are proportional to T −1/2.
Using (42)–(44), the linearized mass, momentum and energy equations, (37)–(40)

can be expressed as

∂t




ρ̃

ũx

ũy

ũz

T̃


 + Λ




ρ̃

ũx

ũy

ũz

T̃


 = 0, (45)

where the elements of the matrix Λ are given in Appendix B. Equation (45) has five
solutions for the growth rate. Of these, the growth rate for temperature fluctuations is
negative and proportional to ε2 in the limit of small wavenumber, since energy is not
conserved. The growth rates of the other four modes decrease proportional to a power
of the wavenumber in this limit. Therefore, (45) can be solved in two ways. The first
is to solve for all five growth rates, and examine the wavenumber scaling of the four
conserved modes alone. The second is to assume that the relation between the
temperature and strain rate fluctuations is given by (A 18), and use this to substitute
for the temperature in the density and momentum equations. It was verified that
these two approaches provide identical results for the growth rate, and the growth
rates obtained in this manner are reported in § § 4, 5 and 6.

The matrix Λ can be written as a function of time using the substitution 35 for the
wavenumber l,

Λ = Λ0 + tΛ1 + t2Λ2. (46)

It should be noted that the terms in expansion (46) arise from the l-dependent terms
in the elements of the matrix Λ, and the substitution l = l0 − k0Ḡt . Therefore, the
highest power of t in (46) is identical to the highest power of l in Λ. Equation (45)
can be formally solved to obtain



ρ̃(t)

ũx(t)

ũy(t)

ũz(t)

T̃


 = exp

(
−tΛ0 − (t2/2)Λ1 − (t3/3)Λ2

)



ρ̃(0)

ũx(0)

ũy(0)

ũz(0)

T̃ (0)


 . (47)

Equation (47) provides the complete solution for the growth of perturbations. In the
present study, asymptotic analysis is used to deduce the growth rates in the short-
and long-time limit, since these provide the limiting behaviour for the growth of
the perturbations. For Ḡt � 1, it is expected that the response is linear, and the
dominant contribution to the growth rate is due to the first term on the right-hand
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side of (46), while for Ḡt � 1, the dominant contribution is due to the third term on
the right-hand side of (46). It should also be noted that Λ1 and Λ2 are identically
zero for perturbations in the gradient–vorticity plane with k = 0, and the growth
of perturbations is exponential. The growth of perturbations in the plane of flow is
analysed first, and the short- and long-time behaviour of these modes is obtained.
The special cases of perturbations along the gradient and vorticity directions are then
considered.

Since most of the results in the present analysis are analytical, it is not necessary to
assume a specific form for the pair correlation function χ(φ), and it is sufficient to note
that χ → 1 for φ → 0, and χ diverges for φ → φc, where φc is the volume fraction at
close packing. In certain cases, numerical results are evaluated in order to determine
the volume fraction at which there is a transition from stable to unstable modes.
In these cases, results are obtained using the Carnahan–Starling pair distribution
function,

χ(φ) =
2 − φ

2(1 − φ)3
, (48)

which is accurate at low- and moderate-volume fractions, and the high-density pair
distribution function,

χ(φ) =
1

1 − (φ/φc)1/3
, (49)

which is more accurate as the close packing volume fraction is approached.

4. Perturbations in the plane of flow
Equations (37)–(40) indicate that the growth rates of the hydrodynamic modes are

not isotropic, and depend on the direction of the wave vector. For waves in the plane
of flow with m = 0, (B 1) indicates the elements Λρz, Λxz, Λyz, ΛT z, Λzρ , Λzx , Λzy

and ΛzT are zero, and so the equation for the z-momentum is decoupled from the
density, x- and y-momentum and energy equations. The z-momentum equation is
solved explicitly to obtain the growth rate of momentum in the vorticity direction,
which is given in the Burnett approximation by(

∂

∂t
+ s0z + s1zt + s2zt

2

)
ũz = 0, (50)

where

s0z =
µ̄

ρ̄

(
k2

0 + l20
)

+
k0l0Ḡ

2
(Ā + Ē)

+
Ḡ2k2

0

ρ̄

(
H̄
8

− P̄
4

− R̄
8

)
+

Ḡ2l20
ρ̄

(
H̄
8

− P̄
4

− Q̄
4

+
R̄
8

)
,

s1z = −2Ḡk0l0µ̄ − Ḡ2k2
0

2
(Ā + Ē) − Ḡ3k0l0

ρ̄

(
H̄
4

− P̄
2

− Q̄
2

+
R̄
4

)
,

s2z =
Ḡ2k2

0µ̄

ρ̄
+

Ḡ4k2
0

ρ̄

(
H̄
8

− P̄
4

− Q̄
4

+
R̄
8

)
.




(51)

The solution of (50) is

ũz(t) = ũz(0) exp [−(s0zt + (s1zt
2/2) + (s2zt

3/3))]. (52)
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Since s0z and s2z are always positive, perturbations are stable at both early and
late times. In the asymptotic limit ε → 0, µ̄ is O(1/ε) larger than ĀḠ and ĒḠ,
and so perturbations are always stable, though the Burnett-order terms have a
destabilizing effect on the perturbations (note that Ā and Ē are negative in the low-
and high-density limits). Equation (50) indicates that the dispersion relation for the
z-momentum in the Burnett and super-Burnett approximations have the same form as
those in the Navier–Stokes approximation, though there are higher-order corrections
for the growth rate proportional to k0l0.

The growth rates for the other three modes are determined by setting the
determinant of the dispersion matrix equal to zero. It is difficult to obtain an analytical
solution for the growth rate, so an asymptotic expansion in the wavenumber is used,
and the growth of perturbations in the short- and long-time limit are examined in
detail.

4.1. Short-time limit

In the short-time limit Ḡt � 1, when terms correct to quadratic order in the
wavenumber are retained, it is found that the growth of perturbations of the other
three conserved modes is proportional to exp (sρxyt). The expression for sρxy , correct
to quadratic order in the wavenumber, is

s3
ρxy + k2Ḡ2

(
ε2T̄ 3/2(3R̄µ̄ρ − µ̄R̄ρ)

3R̄ε2T̄ 3/2 − Ḡ2µ̄
+

Ḡ2

8
(H̄ρ − 2P̄ρ − 2Q̄ρ + R̄ρ)

+
Ḡ2T̄

8

(
ε2R̄ρT̄

3/2 − Ḡ2µ̄ρ

)(
3R̄ε2T̄ 3/2 − Ḡ2µ̄

) (H̄ − 2P̄ − 2Q̄ + R̄)

)

+ Ḡkl

(
−p̄∗

ρ +
2p̄

(
ε2R̄ρT̄

3/2 − Ḡ2µ̄ρ

)(
3R̄ε2T̄ 3/2 − Ḡ2µ̄

)
)

= 0, (53)

where p̄∗, the pressure modified by the Burnett coefficients, is

p̄∗ = p̄ + Ḡ2(−Ā/4 − C̄/2 + Ē/2 + F̄/12). (54)

In the limits of low and high density, (53) reduces to

s3
ρxy − Ḡ3k2

0

5
√

5π

4608εφ̄2
+

5k0l0Ḡ
3π

2304ε2φ2
= 0, (55)

s3
ρxy +

2k2
0χ̄ρḠ

3φ2(12 + π)3/2

15
√

5επ3/2
− 2k0l0χ̄ρḠ

3φ2(12 + π)

15ε2π
= 0. (56)

It is apparent that there is no qualitative difference between the predictions of the
Navier–Stokes, Burnett and super-Burnett approximations, though there are quanti-
tative differences.

Equation (53) indicates that the growth rate has an unusual k
2/3
0 power-law

dependence on the wavenumber for l0 = 0, and an unusual (k0l0)
1/3 dependence

for l0 �= 0, and it is instructive to examine the reasons for this. The mass and
momentum equations, (37)–(39), correct to leading order in small k and l, are

sρxyρ̃ + ρ̄ikũx + ρ̄ilũy = 0, (57)

ρ̄(sρxyũx + Ḡũy) + (ikp̄ρ − iḠlµ̄ρ)ρ̃ +
i

T̄
(kp̄ − Ḡlµ̄)T̃ = 0, (58)

ρ̄sρxyũy + (ilp̄ρ − iḠkµ̄ρ)ρ̃ +
i

T̄
(lp̄ − Ḡkµ̄)T̃ = 0. (59)
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Figure 1. Variation of ψ1 = (s3
ρxyε/Ḡ

3k2
0) with φ̄ for l0 = 0, where sρxy is given by equation

(53). The solid curve is obtained when the Carnahan–Starling approximation (equation (48)) is
used for the pair distribution function, and the broken curve is obtained when the high-density
approximation (equation (49)) is used for the pair distribution function.

It is apparent that the convection due to the mean flow in the x-momentum equation
(58) is responsible for a coupling between the x- and y-momentum equations. This
coupling between the x- and y-momentum equations, owing to the turning of the
wave vector by the mean flow, results in the k

2/3
0 scaling for the growth rate.

Equation (53) also indicates that there is a qualitative difference between the
growth rates for perturbations in the flow direction with l0 = 0, and for transverse
perturbations with l0 �= 0. For perturbations in the flow direction, the growth rate is
proportional to (−1)1/3Ḡk

2/3
0 , and there is one diffusive solution with a zero imaginary

part, and two propagating solutions with equal real parts and equal and opposite
imaginary parts. In the low-density limit, s3

ρxy is positive, and so the diffusive mode
has a positive real part, indicating that it is unstable, while the propagating modes
have negative real parts, indicating that they are stable, in agreement with the low-
density analysis of Kumaran (2001b). The growth rates scale as Ḡk2/3ε−1/3, and this
scaling behaviour is also in agreement with the low-density results of Kumaran
(2001b). When the volume fraction approaches close packing, (sρxy) is negative, and
the diffusive mode is stable while the propagating modes are unstable. As shown in
figure 1, there is an intermediate volume fraction at which sρxy is identically zero, and,
at this volume fraction, all three solutions for the growth rate are identically zero,
indicating that all modes are neutrally stable. The volume fraction at which the growth
rate passes through zero is φ̄ = 0.148 in the Carnahan–Starling approximation, (48),
for the pair distribution function, and φ̄ = 0.100 in the high-density approximation
(49).

Next, we consider the case p̄ρk0l0 � Ḡµ̄ρk
2
0 , which is equivalent to l0 � εk0, since

the viscosity is O(Ḡ/ε) while the pressure is O(Ḡ2/ε2) in the limit ε → 0. The
leading-order growth rate (53) is proportional to −(−1)1/3Ḡk

1/3
0 l

1/3
0 . There are two
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Figure 2. Variation of ψ2 = (s3
ρxyε

2/Ḡ3k0l0) with φ̄ for l0 � εk0, where sρxy is given by

equation (53), and ψ2 = −(s
′2
ρzε

2/Ḡ2m2), where s ′
ρz is the component of sρz in equation

(71) which is proportional to m. The solid curve is obtained when the Carnahan–Starling
approximation (equation (48)) is used for the pair distribution function, and the broken
curve is obtained when the high-density approximation (equation (49)) is used for the pair
distribution function.

complex conjugate and one real solutions for the growth rate in this case as well. In
the low-density limit, (55) shows that the propagating modes are unstable, while the
diffusive mode is stable. Near close packing, (56), shows that the diffusive mode is
unstable while the propagating modes are stable in this case. There is an intermediate
volume fraction, as shown in figure 2, which is φ̄ = 0.149 in the Carnahan–Starling
model, (48), for the pair distribution function and 0.100 in the high-density model,
(49), for the pair distribution function, at which the growth rates of all three modes
are identically zero. At this point, there is an exchange of stability with the real and
imaginary parts of all three solutions passing through zero simultaneously.

4.2. Long-time limit

In the limit of long time Ḡt � 1, the term proportional to t2 on the right-hand side
of (46) is dominant. The velocity fluctuations decay as

ũx(t) = exp
(
−µ̄∗Ḡ2k2

0 t
3/3

)
ũx(0),

ũy(t) = exp
(
−(µ̄∗/3 + µ̄∗

b)Ḡ
2k2

0 t
3/3

)
ũy(0),

ũz(t) = exp
(
−µ̄∗Ḡ2k2

0 t
3/3

)
ũz(0).


 (60)

where

µ̄∗ = µ̄ + Ḡ2(H̄/8 − P̄/4 − Q̄/4 + R̄/8),

µ̄∗
b = µ̄b + Ḡ2(H̄/12 + Ī/4 + K̄/4 + L̄/2 − N̄/4

− Ō/2 − R̄/12 − S̄/2 − T̄/6 − Ū/12).


 (61)
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are the shear viscosity and bulk viscosity modified by the Burnett and super-Burnett
corrections. Equation (60) indicates that the velocity perturbations are stable in the
long-time limit, and the decay rate of these perturbations also scales as Ḡk

2/3
0 in this

limit. There is a quantitative variation in the long-time growth rate when the Burnett
terms are included, but the qualitative behaviour remains unchanged.

The results in (61) should be interpreted with care, since the super-Burnett analogue
of the Burnett term which is proportional to the second spatial gradient of pressure
has been neglected. In the super-Burnett approximation, it is expected that there is
a term of the type (∂(ρ−1(∂σ

(1)
jk /∂xk))/∂xi), where σ

(1)
jk is the O(ε) contribution to

the stress tensor. It is easy to see that this term results in a factor proportional to
exp (Ck4

0 t
5) on the right-hand side of (61), and this term is dominant at late times,

where C is a coefficient that can be determined from the form of the super-Burnett
term. The stability then depends on the sign of the real part of C, which has not been
evaluated here. If C is negative, then the perturbations are stable in the long-time
limit. Even though the decay at long times is dominated by the super-Burnett term,
it can be shown that the Navier–Stokes approximation provides an accurate estimate
of the maximum amplitude of the fluctuations after the transient growth. The growth
rate of perturbations at early times is proportional to k

2/3
0 Ḡ from (53), while the decay

at long times in the Navier–Stokes approximation is proportional to Ḡ3k2
0 t

2 from (60).
The maximum amplitude is attained when these two are of the same magnitude, or
when t ∼ k

−2/3
0 Ḡ−1. In this case, the correction to the growth rate due to the Burnett

term is O(Ḡ4k4
0 t

4), or O(k4/3
0 ), which is small in the small-wavenumber limit. Thus, if

the higher-order contributions to the growth rate due to the super-Burnett and higher
corrections are stabilizing, the Navier–Stokes approximation is adequate to describe
the transient growth of perturbations accurately.

5. Perturbations in the gradient direction
Equation (53) indicates that the growth rates for the density and x- and y-

momentum modes are identically zero for k = 0. In this case, it is necessary to
incorporate corrections to the dispersion relation that are higher order in l, in order
to determine the leading behaviour of the growth rate. The growth rate for the
momentum in the z-direction is still given by (50). Of the other three modes, one is
diffusive with real growth rate proportional to l2, while the other two are propagating
with complex conjugate growth rates in which the imaginary part is proportional to
l and the real part is proportional to l2.

5.1. Diffusive mode

The growth rate of the diffusive mode is given, in the super-Burnett approximation,
by

sd =
−µ̄∗(ε2T̄ 3/2(3R̄p̄ρ − 2p̄∗R̄ρ) + Ḡ2(µ̄∗p̄∗

ρ − 2p̄∗µ̄∗
ρ)

)
l2

T̄ 3/2ε2ρ̄(3R̄p̄∗
ρ − 2p̄∗R̄ρ) + Ḡ2(4µ̄∗p̄∗ + ρ̄(2p̄∗µ̄∗

ρ − µ̄∗p̄∗
ρ))

, (62)

where p̄∗ and µ̄∗ are given by (54) and (61). Equation (62) indicates that the
Burnett and super-Burnett terms alter the quantitative value of the growth rate
of the hydrodynamic modes, but do not affect the scaling with wavenumber. In the
limit of low density, this growth rate is given by

s
(l)
d = −

√
5Ḡπ

192εφ
l2, (63)
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Figure 3. Variation of ψ3 = (sdε/Ḡl2) with φ̄, where sd is given by equation (62). The
solid curve is obtained when the Carnahan–Starling approximation (equation (48)) is used
for the pair distribution function, and the broken curve is obtained when the high-density
approximation (equation (49)) is used for the pair distribution function.

and this diffusive mode is stable. Near close packing, the growth rate of this diffusive
mode is

s
(c)
d =

(48 − π)Ḡφ̄

360ε

(
12 + π

5π

)1/2

l2. (64)

Equation (64) indicates that the diffusive mode is unstable in the limit of high density,
though the growth rate of this mode is low and does not diverge as the system
approaches close packing. The growth rate is shown as a function of volume fraction
in figure 3 at intermediate densities, and it is found that there is a transition from
stable to unstable modes at a volume fraction φ = 0.217 when the Carnahan–Starling
approximation (equation (48)) is used for the pair distribution function, and φ = 0.154
when the high-density approximation (equation (49)) is used for the pair distribution
function. Even though this mode becomes unstable, the magnitude of the growth rate,
scaled by (Ḡ/ε), is small, as shown in figure 3.

Since the long-wave analysis indicates that the O(l2) contribution to the growth
rate is positive, it is necessary to examine the next correction to the growth rate to
determine the maximum wavenumber for unstable modes. The calculation of the next
higher contribution is algebraically complicated, and so only the results for volume
fractions near close packing are provided. In this case, the next correction to the
growth rate turns out to be O(l4), and the growth rate has the form

sd = s
(c)
d

(
1 − (12 + π)l2

120ε2

)
, (65)

where s
(c)
d is given in (64). This calculation indicates that perturbations are unstable

for l < ε(120/(12 + π))1/2. However, the present analysis is valid for l � ε, since the
conduction terms in the energy equation are neglected in comparison to the source
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and dissipation of energy, and the result for the maximum wavenumber of unstable
modes is not accurate. This is corrected by incorporating the conduction term κl2T̃ in
the energy equation, where κ is the thermal conductivity. When thermal conductivity
is included, it is found that the growth rate, in the leading approximation in small
wavenumber, is

sd = s
(c)
d

(
1 − (12 + π)l2

120ε2

)
− l4(12 + π)κπ

1080ε2φ
, (66)

instead of (65). Since the thermal conductivity increases proportional to χ near
close packing, the stabilizing effect of the term proportional to the thermal
conductivity in (66) is dominant, and the maximum wavenumber for unstable modes
is l = (1080ε2φ(s(c)

d / l2)/(π(12 + π)κ))1/2. Since the thermal conductivity increases
proportional to χ near close packing, the maximum wavenumber of unstable modes
decreases proportional to χ−1/2 in this limit.

5.2. Propagating modes

The other two solutions are propagating, with negative real parts and equal and
opposite imaginary parts. The results are provided only for the Navier–Stokes
model, since the results for the Burnett and super-Burnett models are algebraically
complicated. It is sufficient to note that the scaling of the growth rate with wave-
number is captured by the Navier–Stokes approximation, and the Burnett and super-
Burnett approximations result in quantitative changes in the numerical coefficients of
the growth rates. The imaginary part of the propagating growth rates is

spi = ±il

(
p̄ρ +

2p̄

ρ

(
Ḡ2(2µ̄ + ρ̄µ̄ρ) − ε2ρ̄R̄ρT̄

3/2

3R̄ε2T̄ 3/2 − Ḡ2µ̄

))1/2

, (67)

while the real part has the form

spr = l2
µ̄

(
ε2T̄ 3/2(3R̄p̄ρ − 2p̄R̄ρ) + Ḡ2(µ̄p̄ρ − 2µ̄ρp̄)

)
2
(
ρ̄ε2T̄ 3/2(3R̄p̄ρ − 2p̄R̄ρ) + Ḡ2(4µ̄p̄ + ρ̄(2µ̄ρp̄ − µ̄p̄ρ))

)
+

s2
pi

6

ε2T̄ 3/2R̄(21µ̄ + 9µ̄b) + 6p̄2 + 9p̄ρρ̄
2T̄ − Ḡ2(µ̄2 + 3µ̄µ̄b) + 9ρ̄2T̄ (spi/ l2)

6
(
ρ̄ε2T̄ 3/2(3R̄p̄ρ − 2p̄R̄ρ) + Ḡ2(4µ̄p̄ + ρ̄(2µ̄ρp̄ − µ̄p̄ρ))

)
(68)

In the limit of low density, the growth rate of the propagating mode has the form

sp =
±il

√
5πḠ

48εφ̄
− l2

√
5Ḡπ

2304ε3φ̄2
. (69)

Near close packing, the limiting value of the growth rate of the propagating modes
are

sp = ±
ilḠφ

√
2χ̄ρ

√
12 + π

ε
√

15π
− l2

(
5

√
5πχ̄ρḠ

512χ̄ 3ε3φ̄
√

12 + π
+

χ̄Ḡφ̄
√

π(12 + π)

18
√

5ε3

)
, (70)

where χ̄ = χ(φ̄) and χ̄ρ = (dχ/dρ)ρ=ρ̄ , and we have used the condition that χ̄ρ �
(χ̄/ρ) near close packing. Equations (69) and (70) show that the propagating modes
are always stable when the density is low or near close packing. The growth rates
were calculated for intermediate densities using the Carnahan–Starling approximation
for the pair distribution function, and were found to have negative real parts at
intermediate density as well.
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6. Perturbations in the vorticity direction
For perturbations with modulation in the vorticity direction with k = 0 and l = 0,

it is easily verified that Λρx , Λρy , Λxρ , Λxz, ΛxT , Λyρ , Λyz, ΛyT , Λzx and Λzy in
Appendix B are equal to zero. Consequently, the determinant of the dispersion matrix
is the product of the determinants of a 3 × 3 matrix, consisting of the density,
z-momentum and energy equation, and a 2 × 2 matrix, which arises from the x-
and y-momentum equations. The former are referred to as longitudinal modes since
they comprise density and momentum variations in the direction of the wave vector,
while the latter are called transverse modes since they comprise momentum variations
transverse to the direction of the wave vector.

6.1. Longitudinal modes

The density and z-momentum equations give two modes which have growth rates
proportional to m in the limit m → 0,

sρz = ± im

(
p̄ρ − Ḡ2(C̄ρ/2 + F̄ρ/6) − 2p̄

(
ε2R̄ρT̄

3/2 − Ḡ2µ̄ρ

3R̄ε2T̄ 3/2 − Ḡ2µ̄

))1/2

− m2

(
µ̄∗∗

b

2ρ̄
+

2µ̄

3ρ̄
+

p̄2

ρ̄
(
3R̄ε2T̄ 3/2 − Ḡ2µ̄

) +
3ρ̄T̄ p̄

(
R̄ρε

2T̄ 3/2 − Ḡ2µ̄ρ

)
(
3R̄ε2T̄ 3/2 − Ḡ2µ̄

)2

)
, (71)

where

µ̄∗∗
b = µ̄b + Ḡ2(−K̄/2 + L̄/2 − P̄/3 − S̄/2 + T̄/3 + Ū/6). (72)

It is observed that the scaling law for the growth rate as a function of wavenumber
is correctly recovered in the Navier–Stokes approximation, and the presence of the
Burnett terms results in a quantitative variation in the numerical coefficients. The
super-Burnett terms do alter the numerical coefficient of m2, but do not affect the
scaling of the growth rate with wavenumber.

In the limit of low density, the O(m) contribution to the growth rate is real,

s(l)
ρz = ±mḠ

( √
5π

48εφ̄

)
− m2

√
5Ḡπ

576ε3φ2
, (73)

and there is one stable and one unstable mode. There is a stabilizing effect owing to
the O(m2) term in (71), and this term stabilizes the perturbations for m > (12ε2φ̄/

√
π)

in the limit of low density. Near close packing, the longitudinal modes are stable and
propagating, with equal and opposite imaginary parts proportional to m,

s(c)
ρz = ±i

mḠφ̄

ε

(
2χ̄ρ(12 + π)

15

)1/2

− m2

(
5χ̄ρḠ

512χ̄ 3ε3φ̄

(
5π

12 + π

)1/2

+
χ̄Ḡφ̄(π(12 + π))1/2

18
√

5ε3

)
. (74)

Thus, there is a transition from unstable to stable modes as the volume fraction is
increased.

The stability is determined by the sign of the O(m) contribution to sρz,
which is denoted by s ′

ρz. It is easily verified, by comparing (53) and (71), that

s ′
ρz = (−s3

ρxym
2/Ḡk0l0)

1/2 for l0 � εk0. Therefore, figure 1 also shows the variation

of (−s
′2
ρzε

2/Ḡ2m2), and there is a transition from unstable to stable modes when

(s
′2
ρzε/Ḡ

2m2) passes through zero in figure 1. The volume fraction for the transition
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Figure 4. Variation of ψ4 = (Ā/4 − Ē/2 − F̄/2) with φ̄. The solid curve is obtained when the
Carnahan–Starling approximation (equation (48)) is used for the pair distribution function,
and the broken curve is obtained when the high-density approximation (equation (49)) is used
for the pair distribution function.

from unstable to stable modes is φ = 0.149 in the Carnahan–Starling model, (48), for
the pair distribution function and 0.100 in the high-density model, (49).

6.2. Transverse modes

The growth rates obtained from the x- and y-momentum equations are of the form

sxy = ±mḠ

√
Ā
4ρ̄

− Ē
2ρ̄

− F̄
4ρ̄

− m2

(
µ̄

ρ̄
+

Ḡ2

ρ̄
(H̄/8 − P̄/4 − Q̄/8)

)
. (75)

In this case, it is observed that there is a qualitative difference in the behaviour of
the growth rate in the Navier–Stokes and Burnett approximations, since the Navier–
Stokes approximation predicts that these modes are diffusive with the decay rate
proportional to m2, while the Burnett approximation indicates that the growth rate
has a contribution proportional to m in the long-wave limit. Inclusion of the super-
Burnett terms results in a quantitative modification of the coefficient of the term
proportional to m2.

The stability of these modes depends on the sign of (Ā/4 − Ē/2 − F̄/4), which is
shown as a function of φ in figure 4. In the limit of low density, the solutions for sxy

have the limiting behaviour

s(l)
xy = ±m

5

96

√
π

7

Ḡ

φ̄
− µ̄(l)

ρ̄
m2. (76)

It is observed that (Ā/4 − Ē/2 − F̄/4) is positive at low density, so that there are
two real solutions for sxy , one of which is positive in the limit of low wavenumber,
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indicating an instability. Near close packing, the limiting behaviour of the solutions
of sxy are

s(c)
xy = ±im

Ḡ(πφ̄cχ̄ )1/2

2
√

6

(
192

35π
− 4

35

)1/2

− µ̄(c)

ρ̄
m2. (77)

Equation (77) indicates that perturbations are stable propagating modes near close
packing, in which the growth rate has an imaginary part proportional to m and real
part proportional to m2.

At intermediate density, (Ā/4 − Ē/2 − F̄/4) becomes negative for φ > 0.114 for
the Carnahan–Starling pair distribution function, (48), and for φ > 0.089 in the high-
density approximation, (49), as shown in figure 4. Beyond these densities, the solutions
for sxy are complex conjugates with negative real parts, indicating stable propagating
modes. The term proportional to m2 has a stabilizing effect on the perturbations, and
(76) predicts that fluctuations are stabilized for m > (48εφ/

√
35π). The instability at

low density, as well as the propagating nature of the fluctuations near close packing,
are not captured by the Navier–Stokes model.

7. Dilute limit
The growth rates are determined numerically at finite wavenumber for a dilute

suspension in the limit of small volume fraction. Since attention is restricted to the
short-time limit, where the growth of perturbations are exponential, the wave vectors
in this section are denoted by (k, l, m) without the superscript zero. It is convenient to
scale the length and velocity by the mean free path (ρ̄d2)−1 and T̄ 1/2, since these are
the relevant length and velocity scales in the dilute limit, and variables scaled in this
fashion are denoted by a superscript asterisk. The scaled rate of dissipation of energy,
in the base state, is then given by 4πε2, and the scaled strain rate is Ḡ∗ = (64π/5)1/2

from a balance between the rate of production by the mean shear and the dissipation
due to inelastic collisions. The growth of perturbations is exponential in the short-time
limit, and the results for the scaled growth rate, s∗, are expressed as a function of the
scaled wavenumbers k∗ = k/(ρ̄d2), l∗ = l/(ρ̄d2) and m∗ = m/(ρ̄d2).

Depending on the relative magnitude of the wavenumber and ε, two regimes
can be identified for the growth rate. The rate of dissipation of energy is large
compared to the rate of thermal diffusion for DT (k2 + l2 + m2)T̄ � ρ̄d2T̄ 3/2ε2, where
the thermal diffusivity DT is estimated as DT = T̄ 1/2/(ρ̄d2). This is equivalent to
(k∗2 + l∗2 + m∗2) � ε2 in terms of the scaled wavenumber k∗. The growth rates in this
limit evaluated in § 4, for perturbations in the flow direction, scaled by (ρ̄d2T̄ 1/2), are

s∗
z =

5

16
√

π
k∗2,

s3∗
ρxy = −8(π/5)1/2εk∗l∗ + 4

√
πε2k∗2,

s∗
T = −8

√
πε2

3
.




(78)

In (78), s∗
T is the growth rate of energy fluctuations, which tends to a finite value in

the limit of small ε. The growth rates in the limit l∗ � ε evaluated in § 5, scaled by
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(ρ̄d2T̄ 1/2), are

s∗
z =

5

16
√

π
l∗2,

s∗
d = − 375l∗4

4096π3/2ε2
,

s∗
p = ±il∗ − l∗2

8
√

πε2
,

s∗
T = −8

√
πε2

3
.




(79)

The equation for s∗
d is apparently in contradiction with that for s

(l)
d in (63), since

the latter increases proportional to l2. However, it should be noted that when s
(l)
d in

(63) is expressed in terms of l∗, the resultant expression is proportional to φ, and the
coefficient of the term proportional to l∗2 approaches zero in the dilute limit. The
next non-zero term is the term proportional to l∗4, which is given in (79) for s∗

d . The
growth rates in the limit m∗ � ε, evaluated in § 6, scaled by (ρ̄d2T̄ 1/2), are

s∗
ρz = ±im∗ − m∗2

10
√

πε2
,

s∗
xy = ±m∗ πε

2

√
5

7
− 5

16
√

π
m∗2,

s∗
T = −8

√
πε2

3
.




(80)

There are three diffusive and two propagating modes for perturbations in the flow
and gradient directions, and five diffusive modes for perturbations in the vorticity
direction. One of the diffusive modes is unstable in the flow direction, and two of the
diffusive modes are unstable in the vorticity direction. All perturbations are stable in
the gradient direction.

The rate of dissipation of energy is small compared to the rate of thermal diffusion
for (k∗2 + l∗2 + m∗2) � ε2. In this case, the dissipation of energy can be neglected
in the leading approximation, and the system resembles a gas of elastic particles
at equilibrium. The hydrodynamic modes of an elastic gas have been studied in
detail, and it is known (Hansen & McDonald 1990) that there are three modes,
corresponding to the transverse momentum and energy fluctuations, which are
diffusive, and two modes, corresponding to the density and longitudinal momentum,
which are propagating. For perturbations in the flow direction, the growth rates are
as follows. The transverse (y and z) momentum perturbations have growth rates
sy = sz = −(µ/ρ). Using µ = (5T 1/2/16

√
πd2) in the dilute limit, the scaled growth

rates are

s∗
y = s∗

z = − 5k∗2

16
√

π
. (81)

The growth rate for temperature fluctuations is sT = (−K/ρCp), where
K =(75T 1/2/64

√
πd2) in the dilute limit, and the specific heat at constant pressure
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Cp = 5/2 for a monatomic gas. Using these, the scaled growth rate is

s∗
T = − 15k∗2

32
√

π
. (82)

The longitudinal modes (density and x momentum) are propagating with growth rate
sρx = ± icsk −Γ k2. Here, the speed of sound cs = (γ (∂p/∂T )|ρ)1/2, where γ = 5/3 is the
ratio of specific heats, and the decay rate of the longitudinal modes is Γ = (1/2)[(K(γ −
1)/ρCp) + (4µ/3 + µb)/ρ]. Using p = ρT , µb = 0, γ = 5/3 and expressions for K , µ

and Cp provided earlier for the dilute limit, the scaled growth rates of the propagating
modes are given by

s∗
ρx = ±ik∗

√
5

3
− 35k∗2

96
√

π
. (83)

Since the system is isotropic in this limit, equivalent relations can be obtained for the
gradient and vorticity directions. In this case, as well, there are three diffusive and
two propagating modes, but all modes are stable.

This transition is analysed using a set of constitutive relations which incorporates
the stress tensor correct to Burnett order in the momentum equation, (15), rescaled
using (ρ̄d2)−1 and T̄ 1/2 as the length and velocity scales, and a modification of the
energy equation, (16), which incorporates the heat flux,

ρ∗Cv

DT ∗

Dt∗ + p∗G∗
ii − 2µ∗S∗

ikS
∗
ki − µ∗

bG
∗
ii

2 + ε2R∗T ∗3/2 + ∂∗
i q

∗
i = 0, (84)

where the heat flux qi is given by

q∗
i = −κ∗∂∗

i T
∗ − κ∗′∂∗

i ρ
∗. (85)

In (85), κ∗ is the thermal conductivity which is, in the dilute limit,

κ∗ =
75

64
√

π
, (86)

and the term proportional to κ∗′ is the energy flux due to density variations, which is

κ∗′ =
375ε2

128
√

π
(87)

in the dilute limit (Sela & Goldhirsch 1998). Since κ ′ is proportional to ε2, the
contribution to the heat flux due to density variations turns out to be numerically
small. Numerical calculations show that this contribution is about 5% of the energy
flux due to temperature variations even at ε = 0.5. However, this contribution is
retained in the results reported below.

The growth rates of the hydrodynamic modes are obtained using the momentum
conservation equation incorporating the stress tensor in (15), and the energy
conservation equation, (84), using the heat flux in (85). It is expected that as the
wavenumber is increased from values smaller than ε to values larger than ε, the growth
rates undergo a transition from the scaling laws in (78), (79) and (80) to the scaling
laws in (81), (82) and (83), and the unstable modes in the limit (k∗, l∗, m∗) � ε become
stable for (k∗, l∗, m∗) � ε. This transition is shown as a function of wavenumber for
ε = 0.01 for perturbations in the flow, gradient and vorticity directions in figures 5,
6, 7 and 8, and for ε = 0.1 in figures 9, 10, 11 and 12. In the flow direction (figures 5
and 9), there are three diffusive and two propagating modes in the limits k∗ � ε and
k∗ � ε, but the scalings of the growth rate with wavenumber are very different in the
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Figure 5. The growth rates −s∗
pr (�), |s∗

pi | (�), s∗
d (�), −s∗

d (∗), −s∗
z (+), −s∗

T (×) as a

function of k∗ at ε = 0.01, l∗ = 0, l∗ = 0.

Figure 6. The growth rates −s∗
pr (�), |s∗

pi | (�), −s∗
z (�), −s∗

d (+), −s∗
T (×) as a function of l∗

at ε = 0.01, k∗ = 0, m∗ = 0.

two limits. The growth rate of the temperature mode, s∗
T , is negative and approaches

a constant value in the limit k∗ � ε, while its magnitude increases proportional to k∗2

for k∗ � ε. The unstable diffusive solution for sρxy in (78) (denoted by s∗
d in figure 5)

increases proportional to k∗2/3 for k∗ � ε, but decreases and becomes negative for
k∗ ∼ ε. The magnitude of the growth rate of this mode converges to the value for the
transverse momentum mode (81) in the limit k∗ � ε. The growth rate of the other
transverse momentum mode, s∗

z , increases proportional to k∗2 in the limits k∗ � ε

and k∗ � ε. The magnitudes of the real and imaginary parts of the propagating mode
increase proportional to k∗2/3 for k∗ � 1, and exhibit the scaling given in (83) for
k∗ � 1. Perturbations in the gradient direction show a transition from the scaling
behaviour in (79) for l∗ � ε to the scalings in (81), (82) and (83) for l∗ � ε, as
shown in figures 6 and 10. The magnitude of the growth rate of the diffusive mode
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Figure 7. The growth rates −s∗
pr (�), |s∗

pi | (�), s∗
d1 (�), −s∗

d1 ∗, −s∗
d5 (�), −s∗

T (×) as a

function of m∗ at ε = 0.01, k∗ = 0, l∗ = 0.

Figure 8. The growth rates sd2 (�), −sd2 (�), sd4 (�) as a function of m∗ at ε = 0.01,
k∗ = 0, l∗ = 0.

s∗
d increases proportional to l∗4 for l∗ � ε, and proportional to l∗2 for l∗ � ε. In the

vorticity direction, the situation is more complicated, as shown in figures 7 and 8 for
ε = 0.01, and in figures 11 and 12 for ε = 0.1. There are five diffusive modes in the
limit m∗ � ε, which are labelled s∗

d1 to s∗
d5. Of these, s∗

d3 corresponds to the growth
rate of damped energy perturbations in the limit m∗ � ε; s∗

d1 and s∗
d2 are the growth

rates of the unstable modes for m∗ � ε, and s∗
d4 and s∗

d5 are the growth rates of the
stable modes in this limit. As m∗ is increased, there is transition from five diffusive
modes to two propagating and three diffusive modes at the wavenumber m∗

d→p owing
to the coalescence of two of the diffusive modes, one of which corresponds to thermal
diffusion in the low m∗ limit. Figures 5–8 show that there are two distinct regimes,
one of which shows the scaling behaviour when energy conduction is neglected in
comparison to dissipation for (k∗, l∗, m∗) � 1, and a second scaling behaviour when
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Figure 9. The growth rates −s∗
pr (�), |s∗

pi | (�), s∗
d (�), −s∗

d (∗), −s∗
z (+), −s∗

T (×) as a

function of k∗ at ε = 0.1, l∗ = 0, l∗ = 0.

Figure 10. The growth rates −s∗
pr (�), |s∗

pi | (�), −s∗
z (�), −s∗

d (+), −s∗
T (×) as a function of

l∗ at ε = 0.1, k∗ = 0, m∗ = 0.

energy conduction is dominant for (k∗, l∗, m∗) � ε. This distinction is not as clear for
ε = 0.1 (figures 9–12), because the scaling in (78), (79) and (80) persists over a larger
range of wavenumber, and the scaling in (81), (82) and (83) is not as easily discernible,
since the range k∗ > ε spans less than a decade.

The wavenumber for transition from unstable to stable perturbations in the flow
direction k∗

t , and the wavenumbers m∗
t1 and m∗

t2 for the transition of the two diffusive
modes in the vorticity direction, increase proportional to ε, as shown in figure 13. The
wavenumber for transition from five diffusive to three diffusive and two propagating
modes in the vorticity direction, m∗

d→p , increases proportional to ε2 in the low ε limit.
As indicated earlier, perturbations are unstable when the wavenumber is small

compared to ε and energy conduction is neglected, but they become stable when
the wavenumber is large compared to ε. Because of this, it is expected that the
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Figure 11. The growth rates −s∗
pr (�), |s∗

pi | (�), s∗
d1 (�), −s∗

d1 ∗, −s∗
d5 (�), −s∗

T (×) as a

function of m∗ at ε = 0.1, k∗ = 0, l∗ = 0.

Figure 12. The growth rates sd2 (�), −sd2 (�), sd4 (�) as a function of m∗ at ε = 0.1,
k∗ = 0, l∗ = 0.

wavenumber for transition from unstable to stable modes will be proportional to
ε in the small ε limit. The instability in the low-wavenumber limit is a transient
instability in the flow direction, since the flow rotates the perturbations to align with
the gradient direction at long times. However, the instability is an absolute instability
in the gradient and vorticity directions. The neutral stability curves in the gradient-
vorticity plane are shown in figure 14. It is more convenient to plot (l∗/ε) versus
(m∗/ε), since the transition wavenumbers decrease proportional to ε in the small
ε limit. Figure 14 shows that the neutral stability curves collapse onto the ε → 0
limiting curve for ε � 0.3, but there is some variation in the neutral stability curves
for ε = 0.5 and ε = 0.7. Since perturbations are unstable at low wavenumber in the
vorticity direction, the neutral stability curves converge to finite value of (m∗/ε) in
the limit (l∗/ε) → 0.
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Figure 13. The wavenumber for transition from unstable to stable perturbations in the flow
direction k∗

t (�), the wavenumber for transition from five diffusive to three diffusive and two
propagating modes in the vorticity direction m∗

d→p (�), the wavenumbers m∗
t1 (�) and m∗

t2 (�)
above which the two diffusive modes in the vorticity direction become stable, as a function
of ε.

Figure 14. Neutral stability curves in the (l∗/ε), (m∗/ε)-plane for ε = 0.1 (�), ε = 0.3 (�)
and ε = 0.5 (�), ε = 0.7 (�), and in the limit ε → 0 (solid line).

The analysis of § 5 has shown that perturbations are stable in the gradient direction
in the dilute limit, and so it is expected that the transition wavenumber in the
gradient direction should tend to zero for (m∗/ε) → 0. Figure 14 indicates that
(l∗/ε) ∝ (m∗/ε)1/3 in this limit, confirming that the results of this section are in
agreement with those of § 5 in the dilute limit.

8. Conclusions
The constitutive relation for the granular flow of smooth, inelastic, spherical

particles was derived in § 2 in the adiabatic limit where the length scale for the
conduction of energy is small compared to the macroscopic scale. In this case, the
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temperature is not a conserved variable, and the rate of change of temperature is
determined by a balance between the source and dissipation of energy. The velocity
distribution function was assumed to be a Gaussian distribution in which the
temperature Tij , which is the mean square of the fluctuating velocity 〈cicj 〉, is not
isotropic. This is inserted into the balance equation for the second moment of the
velocity distribution, and solved using an asymptotic expansion in the parameter
ε = (1 − e)1/2. The stress tensor was then calculated from the distribution function,
and inserted into the momentum equations to obtain equations for the velocity field.
Since energy is a non-conserved variable, the stress tensor does not contain terms
that depend on the gradients of the temperature (apart from those obtained from the
dependence of the viscometric coefficients on the temperature).

The terms in the stress tensor were calculated correct to O(ε2). The leading-
order terms correspond to those obtained in the Euler approximation, in which the
pressure is isotropic, and the O(ε) terms correspond to those in the Navier–Stokes
approximation where the viscous stress appears. The O(ε2) terms correspond to the
Burnett approximation, which contain normal stress differences. It should be noted
that in the classical kinetic theory, these correspond to terms that are proportional to
the zeroth, first and second powers of the rate of deformation tensor. However, in the
present case, all terms are quadratic functions of the rate of deformation tensor, owing
to the dependence of the temperature on the rate of deformation tensor. It is found
that the terms obtained in the present calculation in the Navier–Stokes approximation
are accurate to within 1.2% of the analogous terms in the Chapman–Enskog theory
dense gases, and are in exact agreement with a simplified Chapman–Enskog result
when the Sonine polynomial expansion for the distribution function is truncated
at the first term. The terms in the Burnett approximation are accurate to within
6.5% of the Chapman–Enskog theory for dilute gases, and are in exact agreement
with a simplified Chapman–Enskog result when the Sonine polynomial expansion is
truncated at the first term. Thus, the results for the second-order closure scheme,
when energy is treated as a non-conserved variable, are in agreement with the results
of the Enskog procedure when energy is treated as a conserved variable where the
temperature is determined by the energy balance equation. The close agreement in the
numerical values of the coefficients indicates that the anisotropic Gaussian captures
the perturbed distribution function accurately. The advantage of this procedure is
that the calculation is simpler than the Chapman–Enskog expansion, and the Burnett
approximation is obtained for dense gases as well. The constitutive relation in the
Navier–Stokes approximation is also of the same form as those of Jenkins & Savage
(1983) and Lun et al. (1984), and the terms up to Burnett order are identical to those of
Sela & Goldhirsch (1998), if the Burnett terms in the stress tensor proportional to the
temperature gradients are neglected. However, Sela & Goldhirsch also calculate the
O(ε2) correction to the viscosity, which is O(ε) smaller than the smallest terms retained
here. The formulation can be systematically extended to determine the super-Burnett
terms, though this was not carried out owing to algebraic complexity. However, the
super-Burnett terms, which are cubic functions of the rate of deformation tensor,
were incorporated in the linear stability analysis, and the effect of these terms on
the decay of the hydrodynamic modes was examined even though the coefficients in
these terms were not explicitly calculated. The simplification in the present procedure
is that it is not necessary to specify boundary conditions for the temperature or the
heat flux. There will be a modification to the temperature near the boundaries owing
to the nature of the boundary surfaces, but these are restricted to distances of the
order of the conduction length from the boundary.
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Even though the results obtained here are similar to those obtained in the usual
Chapman–Enskog procedure, it is important to note that the procedure used is
qualitatively different. In a gas at equilibrium, Newton’s law for viscosity provides
terms that are proportional to the gradient of the mean velocity, while the Burnett
terms are proportional to the second spatial derivative of the velocity and quadratic
functions of the velocity gradient. Therefore, the stresses in the Navier–Stokes
approximation is a linear function of the wavenumber, while the stress in the Burnett
approximation is a quadratic function of the wavenumber. In a driven system,
however, the stresses in the Navier–Stokes and Burnett approximations contain linear
functions of the wavenumber because there is a mean velocity gradient. Therefore,
the Euler, Navier–Stokes and Burnett terms are obtained using an expansion in ε in
the present analysis, in contrast to the expansion in gradients in the usual Chapman–
Enskog procedure, and the Navier–Stokes and Burnett terms contribute at equal order
in the wavenumber expansion in a sheared granular material. In this situation, it is
of interest to determine whether inclusion of terms that are higher order in ε results
in qualitative variations in the structure of the hydrodynamic modes, or whether the
variation is only quantitative so that a Navier–Stokes description with renormalized
pressure and viscosity is adequate. This issue was examined in § § 4, 5 and 6.

The constitutive relation evaluated in § 2 was used to determine the decay rates
of the hydrodynamic modes for a linear shear flow in § § 4, 5 and 6. Since a
constant velocity gradient is imposed on the material, it is not possible to obtain
an eigenvalue problem using wave vectors that are independent of time, and it is
necessary to analyse the flow using time-dependent wave vectors which turn with the
flow. Because of this, the dispersion matrix is a function of time for perturbations with
modulation in the flow direction, while it is time-independent for perturbations with
modulation in the gradient and vorticity directions. Both the short-time and long-time
asymptotic behaviour of the hydrodynamic modes were analysed for perturbations
with modulation in the flow direction.

For perturbations with modulation in the plane of flow, there is a decoupling
between the z-momentum equation and the other three conservation equations. The
mode corresponding to z-momentum variations shows typical diffusive behaviour,
with decay rate proportional to (k2 + l2). The decay rate of the other three modes
are qualitatively different. In the small-time limit, the growth rates are proportional
to (−1)1/3Ḡk

2/3
0 for Ḡµ̄ρk0 � p̄ρl0, and −(−1)1/3Ḡk

1/3
0 l

1/3
0 for Ḡµ̄ρk0 � p̄ρl0, where

k0 and l0 are the wavenumbers at zero time. This unusual 2/3 power law scaling
of the growth rate with wave vector is due to the coupling between the x- and
y-momentum equations due to the density dependences of the pressure and viscosity.
In addition, it is observed that there are one or two growing modes at early-times
at all densities, except at a particular density of when all modes are neutrally stable
and there is an exchange of stability. The early-time results also indicate that the
qualitative behaviour of the growth of perturbations is accurately captured by the
Navier–Stokes model.

In the long-time limit, the growth rate of perturbations in the plane of flow
depends on the constitutive model used. In the Navier–Stokes approximation, the
slowest decaying modes have a decay rate proportional to k2

0Ḡ
3t2, resulting in a 2/3

power-law dependence of the decay rate on the wavenumber owing to the turning of
the wave vector by the mean flow. Though the analysis was not carried out for the
Burnett and super-Burnett approximations, it was anticipated that the growth rate in
these cases scale as k3

0Ḡ
4t3 and k4

0Ḡ
5t4 respectively. Thus, it appears that the long-time

behaviour is sensitive to the constitutive model for the stress, and it is necessary to
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carry out the analysis with higher-order terms in the constitutive equation for the
stress tensor to ascertain whether perturbations do decay in the long-time limit for
k0Ḡt ∼ 1. However, it should be noted that there is an upper bound on the t for
which the analysis is valid. This is because a low wavenumber analysis has been used,
and it is implicitly assumed that the scaled wavenumber is small compared to 1. As
time progresses, the wavenumber in the gradient direction increases as l = l0 + Ḡk0t ,
and the scaled wavenumber l is not small for t ∼ (Ḡk0)

−1, even though the initial
wavenumber in the flow direction k0 may be small. In this case, a hydrodynamic
analysis breaks down, since the length scale is smaller than the microscopic scale. It
can only be concluded that if the perturbations decay at long times in this regime,
the maximum amplitude of fluctuations, as well as the initial growth and subsequent
decay, can be adequately described by the Navier–Stokes approximation.

For perturbations with modulation in the gradient direction, there are two
propagating modes in which the growth rates are complex conjugates with imaginary
parts proportional to l and real parts proportional to l2, and one diffusive mode in
which the growth rate has a real part proportional to l2. The propagating modes
are stable, and the dependence of the growth rate on the wavenumber is captured
by the Navier–Stokes model, though there are quantitative corrections due to the
Burnett terms. The diffusive mode is stable at low density, but becomes unstable
when the volume fraction exceeds 0.154 to 0.217 depending on the model for the pair
distribution function. The present calculation predicts that this mode is unstable in
the limit of high density, and is the most unstable mode in this limit. The Burnett
and super-Burnett corrections do not affect the stability characteristics of this mode.
In order to determine the range of wavenumbers for which the diffusive mode is
unstable, it was necessary to calculate the next correction to the growth rate in the
wavenumber expansion, which turned out to be proportional to l4. It was found
that this contribution is stabilizing, and the conduction of energy has a significant
effect on this contribution. In the limit of high density, the range of wavenumbers
for instability decreased proportional to χ(φ)−1/2 where χ is the pair distribution
function which diverges at close packing. In addition, the maximum growth rate of
perturbations remains finite and numerically small at all densities. The combination
of a low growth rate and a small range of unstable wavenumbers would make this
instability difficult to detect, especially for studies carried out on finite-size systems.

For perturbations with modulation in the vorticity direction, there is a decoupling
of the dispersion matrix into a 3 × 3 matrix, which couples the fluctuations in the
density, z-momentum and temperature (longitudinal modes), and a 2 × 2 matrix
which couples the x- and y-momenta (transverse modes). In the limit of small
wave vector, the growth rate for the longitudinal modes has a real and negative
part proportional to m2, and contributions equal in magnitude and opposite in
sign proportional to m. The contributions proportional to m are real in the limit
of low density, indicating that there is one stable and one unstable mode. In the
limit of high density, the contributions proportional to m are imaginary, indicating
the presence of two stable propagating modes. There is a transition from unstable
to stable modes at a volume fraction between 0.1 and 0.149 depending on the
model for the pair distribution function. It is found that the Burnett and super-
Burnett corrections do not alter the qualitative behaviour of these modes. The growth
rates for the x- and y-momentum perturbations, in the leading approximation, are
given by sxy = ±mḠρ̄(Ā/4 − Ē/2 − F̄/4)1/2 − m2(µ̄/ρ̄). In this case, it is found
that the Burnett corrections affect the qualitative nature of these modes, since the
component of the growth rate proportional to m is not captured by the Navier–Stokes
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approximation. However, the super-Burnett corrections do not qualitatively change
the nature of these modes. In the limit of low-density, there are two real solutions for
the growth rate proportional to m, one of which is positive and the other negative,
indicating that these modes are unstable in the low-density limit. In the limit of high
density, the contribution proportional to m is imaginary, and the transverse modes are
damped propagating modes. In the intermediate density regime, there is a transition
from unstable to stable modes when the density is increased beyond 0.089 − 0.114
depending on the model used for the pair distribution function.

When the wavelength of perturbations is small compared to the conduction length,
the conduction of energy is large compared to dissipation, and the structure of the
hydrodynamic modes is expected to be identical to that for a gas of elastic particles.
In this case, there are three diffusive modes (corresponding to transverse momentum
and energy perturbations) and two propagating modes (corresponding to density
and longitudinal momentum perturbations). All modes are stable in this limit. As
the wavenumber undergoes a transition from (k, l, m) � ε to (k, l, m) � ε, there is
expected to be a transition from the scaling derived in § § 4, 5 and 6 to that for a
system of elastic particles. This transition was analysed in § 7 for a granular flow in
the dilute limit, where the Burnett approximation for the stress tensor was used in
the momentum balance equations, and the energy balance equation incorporated the
divergence of the heat flux due to temperature and density gradients. This generalized
hydrodynamic model showed the transition from the growth rates in § § 4, 5 and 6 to
the growth rates for a system of elastic particles for ε = 0.01, though the transition
was less clear for ε = 0.1, since the range of wavenumbers was not sufficient to infer
scaling laws. This result provides further verification that energy conduction can be
neglected at length scales large compared to the conduction length.

In the dilute limit, it was verified that the scaling of the growth rate with
wavenumber and with ε are in agreement with the scaling obtained (Kumaran
2001a, b) using a more detailed description where the higher moments of the velocity
distribution are included. Thus, the present description, which includes the Burnett
terms, is adequate for describing the stability of a sheared granular flow in the long-
wave limit. The Navier–Stokes description is not adequate for this purpose, since the
predictions for the growth rate in the vorticity direction depend on the Burnett-order
terms. The stability analysis is also in agreement with the initial time studies of Savage
(1992) and Babic (1993), which indicated the presence of unstable modes in all three
directions at short time. The results for perturbations in the plane of flow at long
time are in agreement with the results of Schmid and Kytomaa for the momentum
fluctuations. However, since Schmid & Kytomaa (1994) included the conduction term
for the temperature, they obtained an additional term in the temperature equation
which decays as exp (−(κ/ρ̄Cv)k

2
0 t

3/3), where κ is the thermal conductivity. The
present analysis indicates that the diffusive mode in the gradient direction becomes
unstable when the volume fraction exceeds a minimum value, but the growth rate
of this is numerically small, and there is a stabilizing effect which is higher order in
wavenumber. This is in agreement with the analysis of Babic (1993), which also
predicts an instability in the gradient direction in the low-wavenumber regime,
though the dependence of the growth rate on the wavenumber and density was not
systematically analysed. This turns out to be the most unstable mode at high-volume
fraction. At low-volume fraction, the present analysis predicts that there are two
unstable modes in the vorticity direction. One of these is not captured by the earlier
studies which use modified Navier–Stokes approximations, since the growth rate is
proportional to the coefficients in the Burnett-order contributions to the stress tensor.
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Though the results of the present analysis are qualitatively similar to those of
Savage (1992), Babic (1993) and Schmid & Kytomaa (1994), the present study uses
an expansion in the wavenumber to obtain analytical results for the growth rate of
the perturbations. In this manner, two distinct regimes are identified, one where the
length scale is large compared to the conduction length (wavelength small compared
to ε), and the other where the length scale is small compared to the conduction
length (wavelength large compared to ε). In the former, the rate of conduction is
small compared to the rate of dissipation, and energy is treated as an active scalar
which is determined by the balance between the rate of production due to shear
flow and the rate of dissipation due to inelastic collisions. Perturbations are found
to be unstable in this regime in the vorticity direction at small-volume fraction, and
in the gradient direction at higher-volume fraction. It is also found that the Burnett
approximation for the stress tensor is necessary for accurately capturing the growth
rates of the hydrodynamic modes. In the opposite limit, the rate of conduction is
large compared to the rate of dissipation, and energy is treated as a conserved
variable in the leading approximation. The hydrodynamic modes in this case are
identical to those for a gas of elastic particles at equilibrium, and there are two
propagating and three diffusive modes, all of which are stable. The identification of
these regimes, and the scaling of the transition wavenumber with ε for the transition
from unstable to stable modes, has not been systematically analysed earlier. The
present study also reveals that a uniform approximation for the equations of motion,
which incorporates the strain-rate-dependent Burnett terms in the stress equation
(neglecting the temperature-dependent Burnett terms), and the Fourier law for heat
conduction in the energy equation (neglecting all the Burnett terms), is the minimal
model which captures the dynamics of the flow in both regimes.

The results of § 7 provide the neutral stability curves in the gradient–vorticity plane
as a function of the parameter ε. These results can be tested by simulations, in
which the smallest allowable wavenumber in the gradient and vorticity directions
can be varied by varying the system size, in order to examine the stability of the
perturbations. In addition, the analysis in § § 5 and 6 provides numerical results
for the volume fraction for the transition from stable to unstable perturbations in
the gradient and vorticity directions for two specific forms of the pair distribution
function. Though the actual volume fraction for transition is dependent on the form
of the pair distribution function, the qualitative nature of the transition from stable
to unstable perturbations could be examined in simulations. A more rigorous test of
the analysis would be to examine the growth or decay of time-displaced correlation
functions in the gradient and vorticity directions using techniques used for deriving
transport coefficients from correlation functions in molecular dynamics simulations
(Allen & Tildesley 1990).

Appendix A
The collision integral for the second moment, correct to O(ε2T ), using the procedure

given in § 2, is
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∂t

=
6ρφχ(φ)

π

[
−ε

√
π

16T
(1)
ij T 1/2

5
− ε2

√
π

(
8T 3/2δij

3

+
16T

(2)
ij T 1/2

5
+

16
(
T

(1)
ik T

(1)
kj − (δij /3)T (1)

kl T
(1)
lk

)
35T 1/2

)



38 V. Kumaran

− 4πT

15

(
2Sij +

5

3
δijGkk

)

+
16

√
πT 1/2

105

(
14

3
SijGkk + 4SikSkj + δijSklSlk +

35

18
δijG

2
kk

)

+
8πε

105

(
14

3
T

(1)
ij Gkk + T

(1)
ik Skj + T

(1)
jk Ski − 3δijT

(1)
kl Slk

)]
, (A 1)

where the volume fraction φ is (πρ/6).
This can be inserted into the second moment equation (6) and solved systematically

to obtain the matrix Tij in terms of the strain rate tensor Gij .

ρ
DTij

Dt
+ ρ(TikGkj + TjkGki) =

∂cρ〈cicj 〉
∂t

. (A 2)

The solution for T
(1)
ij is obtained from the O(ε) contribution to the symmetric traceless

part of the second moment equation,

ρT (Gij + Gji − 1/3δijGkk) =
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, (A 3)

where (·)|1 denotes the O(ε) contribution to (·). This is easily solved to obtain

εT
(1)
ij = −SijT

1/2Q(φ), (A 4)

where Sij = (Gij + Gji − (2δij /3)Gkk)/2 is the symmetric traceless part of the rate of
deformation tensor, and
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The second correction T
(2)
ij is determined in a similar fashion from the second

correction to (A 2),
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where (·)|2 denotes the O(ε2) contribution to (·). The substantial derivative on the
left-hand side of (A 6) is simplified as

D(T 1/2SijQ(φ))

Dt
= SijT

1/2 dQ

dρ

Dρ

Dt
+

SijQ(φ)

2T 1/2

DT

Dt
+ T 1/2Q(φ)

DSij

Dt
(A 7)

= −SijT
1/2 dQ

dρ
ρGii +

SijQ(φ)

2T 1/2

DT

Dt
+ T 1/2Q(φ)

DSij

Dt
, (A 8)

where the substitution (Dρ/Dt) = −ρGii (mass conservation) has been used. The
terms on the right-hand side of (A 8) are evaluated as follows. The substantial
derivative of the symmetric part of the rate of deformation tensor is
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using the substitution ρ(Dui/Dt) = (∂σij /∂xj ) (momentum conservation). Since terms

proportional to T ε2 are incorporated in the expression for T
(2)
ij , it is sufficient to

incorporate the leading-order contribution to the stress in an expansion in ε, which
is given by (−pδij ) from (15) for the stress tensor.
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The term proportional to the substantial derivative of T is simplified using (16) for
(DT/Dt).
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These are inserted into the second moment equation to obtain the second correction
to the stress tensor,
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where Aij = (Gij −Gji)/2 is the antisymmetric part of the rate of deformation tensor.
This is inserted into the second moment equation, and the trace of the resulting

equation is the energy balance equation,

ρCv
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+ p(φ, T )Gii − 2µ(φ, T )SikSki − µb(φ, T )G2

ii + ε2R(φ)T 3/2 = 0, (A 13)

where p(φ, T ), µ(φ, T ) and µb(φ, T ) and R(φ) are

p = ρT (1 + (4 − 2ε2)φχ(φ)), (A 14)
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and Cv = 3/2 is the specific heat at constant volume. For a steady and spatially
homogeneous flow with (DT/Dt) = 0, (A 13) is easily solved to determine T
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where the positive sign is assumed in the root of the quadratic equation because of
the requirement that T 1/2 has to be positive so that the viscosity is positive, and M(φ)
and N (φ) are
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Equation (A 18) reveals that the scaling of the mean square velocity of the particles
is sensitive to the type of flow. For a radial flow with Gii �= 0, the leading-order
temperature scales as T ∼ (G2

ii/ε
4), whereas for a flow with no radial component

(Gii = 0), the temperature has the form T ∼ (SijSji/ε
2), as indicated in (8).

The scalings in (9) and (10) then follow from (A 4) and (A 12). For a spatially
inhomogeneous flow with (DT/Dt) �= 0, the leading-order approximation for (A 13)
is
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This is identical to the leading-order solution for the energy balance equation in an
inviscid fluid, and has been used in A 11.

The constitutive relation for the stress tensor is now evaluated. The stress σij , which
is the rate of transport, per unit area, of i-momentum across a surface whose unit
normal is in the j -direction, consists of two parts. The first is the kinetic part σ

(k)
ij ,

which is due to the physical transport of particles across the surface, and the other is
the collisional part σ

(c)
ij , which is due to the collision of particles on one side of the

surface with particles on the other side,
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Adding the two contributions, we obtain the familiar form of the stress tensor given
in (15), where p, µ and µb are given in (A 14)–(A 16) and the coefficients A to G are
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Appendix B
The elements of the matrix Λ in (45) in the Burnett approximation are,

Λρρ = 0, Λρx = ikρ̄, Λρy = ilρ̄, Λρz = imρ̄, ΛρT = 0,

ρ̄Λxρ = i(−Ḡlµ̄ρ + k(p̄ρ + Ḡ2(−Āρ/4 − C̄ρ/2 − Ēρ/2 + F̄ρ/12)))

− 2ikp̄ρḠ
3ρ̄

(2k2 − kl + 3l2 + 2m2),

ρ̄Λxx = ρ̄s + µ̄(4k2/3 + 2l2 + m2) + µ̄bk
2 + klḠ(2Ā/3 + C̄ + D̄/2 + Ē/2 − F̄/6),

ρ̄Λxy = ρ̄Ḡ + (4klµ̄/3) + klµ̄b + ĀḠ((k2/2) + (l2/6) + (m2/4)) + C̄Ḡk2 + (D̄Ḡl2/2)

+ ĒḠl2/2 + F̄Ḡ(k2/6 + k2/4),

ρ̄Λxz = (µ̄km/3) + µ̄bkm + Ḡlm(−Ā/12 + D̄/2 + Ē/2 − F̄/4),

ρ̄ΛxT = −2ikp̄Ḡ
3ρ̄

(2k2 − kl + 3l2 + 2m2) +
i(kp̄ − lµ̄/2)

T̄
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ρ̄Λyx = (µ̄kl/3) + klµ̄b + ḠĀ(k2/6 + l2/2 + m2/4) + C̄Ḡl2 + (D̄Ḡk2/2)

− ĒḠ(k2/2 + l2 + m2) − F̄Ḡ(l2/6 + m2/4),

ρ̄Λyy = sρ̄ + +µ̄(4l2/3 + k2 + m2) + µ̄bl
2
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ρ̄Λyz = (µ̄lm/3) + lmµ̄b + Ḡkm(−Ā/12 + D̄/2 + Ē/2 − F̄/4),
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3ρ̄
(k2 − 5kl − 2m2) +

i(lp̄ − kµ̄/2)

T̄
,

ρ̄Λzρ = imp̄ρ − iḠ2m(C̄ρ/2 + F̄ρ/6) − 2imp̄ρḠ
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ρ̄Λzx = km(µ̄b + µ̄/3) + Ḡlm(Ā/4 + C̄ − Ē/2 + F̄/12),

ρ̄Λzy = lm(µ̄b + µ̄/3) + kmḠ(Ā/4 + C̄ − F̄/12),
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2
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.

Here, the first subscript for Λ refers to the conservation equation (ρ for the density
conservation, x, y and z for the momentum conservation in the respective directions
and T for the energy conservation equation), and the second refers to the perturbation
variable (density, velocity in the three directions and temperature) multiplied by this
coefficient.
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